

Invited paper
Being Critical in, on or around Computing?

Christiane Floyd
Software Engineering Group

Computer Science Department, University of Hamburg
Vogt-Kölln-Straße 30, D - 22527 Hamburg, Germany

INTRODUCTION
When I was invited as an opening speaker for this
conference, I was not asked to embed it in what some call
the Aarhus tradition that is now giving rise to the fourth
decennial international and interdisciplinary scientific event.
However, I found that I could not do otherwise. Partly,
because I am full of admiration for what has been achieved,
and partly because I wonder where the movement is now
going.

While I was not aware of the first conference “Working in
Systems Development” [6] at the time, I find it quite
amazing in retrospect that scientists and professionals in the
computing field here saw the need to view their technical
work in its social context already in 1975. In other
countries (including Germany and the US), these questions
were either not raised or they were debated under headings
such as “Computers and Society” or “Informatics and
Society”, with quite different implications. In fact, the latter
titles are no longer considered to be relevant any more,
while the issues of interest are now generally discussed as
“Contextual Informatics”. Congratulations.

The universe of discourse evolving from the original
concern was shaped by several factors: political alliance
with representatives of computer users, social theories
permitting to view computing in context, and participatory
methods for system development. Scandinavia has
dominated the international discussion in participatory
design (PD) ever since, but there were important variations
that reflected other cultural contexts in Europe and North
America.

The second conference “Computers and Democracy” [7]
showed how the ambition, the self-confidence and the
international standing of the Aarhus community had
increased. It was an important event for many and had a
great impact worldwide. It was also important for me. It

gave me an opportunity to consolidate my critical position
in software engineering, and my contribution “Outline of a
Paradigm Change in Software Engineering” [2] , which
focussed on the complementarity of the process-oriented and
the product-oriented perspectives, was regarded as a
theoretical underpinning for the work going on in this
community at the time. While the conference was
interdisciplinary, it addressed primarily an audience in
computing and provided a platform, where computer
professionals could find inspiration and guidance for
orienting themselves in the social dimensions implied by
the systems they constructed.

These concerns of the 1980s reflected the tacit assumptions
of societal makeup, information technologies and
applications at that time. In the 1990s they were superseded
by an increasing movement to personal and cooperative
computing, creative design, innovative technologies, and
aesthetical concerns. The emergent social theories portrayed
networks of people interacting with IT artefacts in
multicultural contexts.

The title of the third conference “Joining Forces in Design”
[8] referred to enlarging the horizon in interdisciplinary
work. It aimed at studying the nature of design, bringing
together scientists from the computer field with social
scientists and artists. I was not an active participant then,
but the conference had been timed so as to coincide with
TAPSOFT’95 (Theory and Practice of Software
Development) where I was an invited speaker. I was very
positively impressed by this timing and took the
opportunity to give a presentation [3], which aimed at
creating a bridge between the formal community that I was
supposed to address and the design community that met next
door. Regrettably, I was quite disillusioned: On one hand,
the formal community did not find it worth while to attend
my talk. My friends from the design community, on the
other hand, gave me indulgent smiles for my futile attempts
at bridging a gap.

The study of computer use had become a discipline on its
own, drawing on approaches from the humanities and the
social sciences, developed for understanding human work,
learning and communication as well as the place of artefacts
in networks of human activities. There are some

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage, and that copies bear this notice and
the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AARHUS’05 8/21-8/25/05 Århus, Denmark
© 2005 ACM ISBN 1-59593-203-8/05/008…$5.00

207

outstanding examples of social scientists cooperating with
computer professionals so as to inform their technical work.
There have been remarkable pilot projects. Moreover, there
have also been institutional attempts at promoting such
collaborations: research laboratories accommodating social
scientists alongside with researchers working in the
technical and formal fields, university departments
combining the two, curricula in the computing disciplines
aiming at multidisciplinary reflection. Thus, the world has
changed, and this, again, is a success that the Aarhus
community – at least in part – can take credit for. However,
the actual connection of these context-oriented reflections on
computing with constructive approaches in computing is
becoming more and more fragile. I could name several
attempts at collaboration that have been given up or that
have degenerated into working side by side in adjacent
rooms.

Meanwhile the world has undergone a profound change in
terms of politics, economy, theories, technology and social
involvement. IT pervades our world and affects it in
countless basic and important ways. In fact, it has given
rise to a world wide transformation that many people like to
call the information society.

Now we meet for “Critical Computing”. My basic concern
is: Can we live up to this title? What is Critical
Computing about? A Google search yields many entries for
“safety critical”, “business critical” and “mission critical”
computing along with the title of the present conference.
What do we mean by computing here? What do we mean by
being critical? And is critical computing, as understood
here, about Critical Computing, as understood elsewhere,
i.e. about computing, where it matters? Or does the
community assembled here withdraw to the safe niches of
designing nice IT artefacts, while leaving critical computing
to others?

LIVING CRITICAL COMPUTING
There are several reasons why I would like to use my
privilege of opening this conference as an opportunity to
honour the memory of Kristen Nygaard. One is that he may
well be considered the founding father of the Aarhus
tradition. Another is that since he died in 2002, I have
become increasingly aware of how much I miss him as a
friend and colleague. But mostly, I would like to portray
him as an outstanding example for what this conference is
all about. In our conference on “Software Development and
Reality Construction” we embedded a section on living
computer science, featuring diverse personalities. Kristen
Nygaard reflected on how he lived Critical Computing [10].
Of course, he was not perfect, his contribution is now
history, we cannot aim to act as he did, the world has
changed. But we can see through his example what Critical
Computing can be.

There is no doubt that Kristen Nygaard worked in
computing. He started as a practitioner in operations
research, he got to know computers as tools used to
facilitate logistics in technical and commercial fields, and to
simulate systems comprising human beings in interaction
with technical equipment of various kinds.

The trace that he left in computer science reflects this
origin: the very name of the language SIMULA that he co-
invented with Ole Johan Dahl – no doubt the fruit of
controversial discussions between the two partners – points
to his concern with modelling and simulation. Around
1965, when the development of SIMULA began, this
concern was quite advanced and way ahead of its time. I
would like to highlight some aspects of how Kristen
Nygaard worked as a computer scientist. One is that he
sought the cooperation with Ole Johan Dahl – a renowned
computer scientist with a formal background. The other,
that the language SIMULA was based on the best
programming language available at the time – Algol 60.
This shows an awareness and appreciation of state of the art
technology and the willingness to build on the conceptual
and technical work of others (as seen from now, the choice
may seem regrettable). And lastly, the modelling concepts
that SIMULA pioneered and that became the start of object-
oriented programming were not invented ad hoc, but
carefully adapted from philosophy. In fact, this is the
distinguishing feature of the Norwegian approach to object-
oriented programming as compared with others (mostly
from the US).

Kristen Nygaard, therefore, gives an outstanding example of
scientific cooperation both within his field and across
disciplinary boundaries – a cooperation that was later
enhanced when he turned his attention to application
systems used in human work and organizations.

Of course, most of the people attending this conference,
have known Kristen Nygaard as a political man in
computing. An attitude, which was controversial, and which
he adopted consciously, knowing well that it would get him
in conflict with the objectivist scientific establishment at
his time [10]. His political work, as well as his scientific
contribution is marked by the willingness to find and
cooperate with allies, to build on existing structures, to
work towards effective societal changes and to make the best
possible use of technology in order to bring these changes
about.

Alongside with his steady political involvement, Kristen
Nygaard also took a profound interest in the nature of the
discipline of computing [9]. In Norway, the name
informatics was used early on, and he gave a beautiful
definition of informatics as a scientific discipline. Also he
supplied an epistemological definition of the concept of
“system”, making clear that people consider something as a
system for a purpose. He also made explicit a profound shift

208

by introducing the notion of perspectivity as a basis for
constructive technical work – a radical change from the
positivist, objectivist tradition he was brought up in. In
laying these foundations, he made important contributions
to understanding design in the computing field.

To my knowledge, Kristen Nygaard did not ever concern
himself with developing or even adapting social theory, he
stayed within computing, though he encouraged and enabled
people in his environment to do so. As for himself, the idea
of perspectivity, elaborated in [9], allowed him to regard the
acting system designer as a responsible professional making
choices. Moreover, his emphasis on the “conflict
perspective” rather than the harmony perspective made it
clear that he viewed society as shaped by clashes of interests
and ongoing struggles for compromises between different
interest groups.

Notwithstanding his critical action, Kristen Nygaard,
throughout his life, retained an enthusiasm for innovative
technology, exemplified mainly in connection with the
development of the Apple / Macintosh line, which he
followed closely. Also, having accomplished his political
missions in his later years, he returned to a keen interest in
object-oriented programming. This – not participatory
design – would be his old age field of scientific activity, so
was his plan.

Beyond all this, perhaps the most important contribution of
Kristen Nygaard was that of networking and creating a
community. It is the community that meets here and now,
the PD family that to some extent owes him its existence
and now stands on its own.

So, these are the levels of critical computing that Kristen
Nygaard points to. As intended by the organizers the focus
of this conference is to be on taking critical action. In the
rest of my paper, I will look at the changed conditions for
critical action in the twenty first century: What is meant by
critical action? Who is involved in critical computing? At
what levels can critical computing take place and how? How
can we find ways to interact with those who are responsible
for shaping the critical technologies of our age?

CRITICAL COMPUTING PRACTICE – OR THE
UNBEARABLE LIGHTNESS OF DESIGN
Critical computing rests on having an impact on computing
practice. At the centre of critical computing there are IT
artefacts, being critical refers to how they are developed and
used. Understanding computer use, however, is not enough
– it needs to be intertwined with development to have an
impact. As compared to the 1980s, computing practice has
changed profoundly, which makes it more difficult to assess
where critical action is meaningful. Computing can be seen
as nexus where different forms of practice meet. While from
within computing, the development perspective is
dominant, from a social science point of view the concern is

with use. To promote a discussion on how these related, I
would like to point out some fields of tension.

Experimental design vs. routine development: Judging
from the papers submitted for this conference, it seems that
the focus here is on the challenge of advanced interfaces to
sophisticated IT gadgets rather than on the drudgery of
conventional information systems. The community seems
to prefer flying in high altitudes to tying itself to the
ground of daily practice in organizations. This is a
fascinating orientation in design research, well suited to
enhance creativity and communication in interdisciplinary
settings. How can it lead to critical computing? What will
the impact be? Hopefully, model designs will inspire others
who produce real-life technology – but the development of
real-life technology seems to be largely outside the scope of
discussion.

Design vs. construction: If design is a separate sphere of
concern, how does it actually relate to constructing useful
and reliable systems? There are different scenarios for
combining design and construction, through prototyping
and, beyond that, through methodological approaches to
participatory software development. However, this
intertwinement needs to be lived and made fruitful in
research and teaching. While people working constructively
in computing need to respect the competence of use-
specialists, this respect needs to be mutual. High-quality
software is the result of good design and good construction
– the borderline between the two not being sharp. To enable
critical computing, design needs to impact construction.

Design for requirements vs. design for opportunities:
The original concern of critical computing was with IT
systems supporting working life. Such systems were
embedded in organizations with well-defined (though
sometimes not articulated) interests. Also, there were well-
defined user groups with knowable competencies and skills.
Embedding IT systems in individual or collective work gave
rise to requirements – which, though difficult to articulate
and subject to change, can nevertheless be made explicit.
This scenario is by no means outdated, but is no longer
addressed directly. Why? Does research focus on innovative
technology providing opportunities for unknown users?
Does personal computing – from text processing to
edutainment – obey to entirely different laws? Is it not
necessary to relate the two forms of design?

Localized design settings vs. global distribution of
labour: For those preparing themselves to work in the
computing professions, it is becoming more difficult to get
a clear picture of what they will be asked to do on their
jobs. The settings of work in the computing fields are
diverse – they influence the scope and meaning of design.
There are a few specialized large companies producing most
of the software in use. Design, there, refers to working on
products that are sold on the open market, with little contact

209

to users. In many organizations, existing software or legacy
systems are enhanced. What is the place and scope for
design here? In the context of outsourcing, there is a new
form of division of labour, requiring intercultural
communication and very strict conventions for work.
Again, what is the place for design? Can design flourish
only in special reservations or can we impact practice on
rough terrains as well?

Large scale IT systems vs. light weight IT artefacts: The
development of software, depending on the actual
application, relies on quite different skills and requires
different methods. This is one reason why approaches to
software development ranging from the waterfall model to
agile methods have been developed, and also why
participation, prototyping, and change can be accommodated
or are rejected. The variety of IT systems also has a bearing
on possibilities of critical action. How does reliability relate
to usability? How can real-time systems be developed using
participatory design? I would like a discussion on strategies
for how critical computing can affect those areas of work
where computing is actually critical for modern society.

Designing new vs. adapting and enhancing existing
systems: While experimental development often pertains to
new systems or artefacts, computing practice more and more
consists in using, adapting, maintaining and re-engineering
existing ones. What do we mean by design in this context?
How can IT systems be introduced, how can their use be
organized? What does critical action refer to?

It seems to me that all discussions concerning critical action
in computing or on computing need to involve a careful
empirical analysis of what actually goes on, what
communities of practice exist in the computing field, and
how it is possible to intervene in the network of activities
involved.

CRITICAL THEORY ON COMPUTING – WHERE DO WE
STAND?
In the 1980s, critical theory essentially referred to Marxist
approaches for understanding the labour process on an
individual or collective level in a society shaped by class
struggle and conflicts of interest. Critical theory then
pertained not to technology itself, which was considered
neutral, but to how technology was used. It called for social
or political change in order to allow for technology use in
the interest of the working class.

The profound crisis initiated by the end of the Cold War –
in German simply called “Wende” (turn) – in 1989 has not
only lead to global political and economic change and a new
world order marked by neo-liberalism, but also to a near-
breakdown of ideologies and belief systems based on ideas
of solidarity, egalitarian society and empowerment.

In the ensuing void, families of theories became important
that emphasized the place of individuals in networks of

communication, shaped by cultures and the use of artefacts.
These families of theories – the constructivist schools of
thought, the social analysis of actors and networks, the
study of artefacts in cultures, the analysis of power in the
manufacture of knowledge, and so on – have been developed
for understanding human learning and creativity, individual
and cooperative work, the interrelation between technology
and organizations, and the interaction of cultures in a
globalized world with multiple identities. They also have
shed a new and fascinating light on computing and the
development and use of IT and provide a starting point for
dealing with the problems at stake here. However, these
approaches mostly have been developed with no specific
concern for computing.

Therefore, we face the task of selecting suitable approaches
and tailoring them to the needs of our discipline. As the
intertwinement between computer technology and the
human world takes place in a variety of contexts,
elaborating an adequate understanding for it becomes an
extremely challenging task. In order to be fruitful, it seems
mandatory to me to focus on the specifics of computing
technology, and not to use the theories in a general way.
There have been many attempts to promote the interaction
between social schools of thought and the computing
communities, I have been active in “Social Thinking and
Software Practice” [1]. If, for example, we “attribute agency
to artefacts”, as we should, no doubt, following Latour, it
seems nevertheless important to study the specific agency of
computer systems, as distinguished from – for example –
that of maps. “Blackboxing” a computer system comes with
specific implications. Likewise, power struggles
manifesting themselves in classifications, will become
reified when computer-implemented. And so on. I use the
term “auto-operational” to denote the specific agency of
computer systems [4]. The greatest challenge seems to me,
to view IT systems as artefacts in communities of practices,
as boundary objects, as nodes in actor networks, and so on,
while – at the same time – remaining aware of their formal
nature and their technical makeup (I have just attempted
with Stefan Ukena to do this for ontologies in [5]).

In my opinion, theories that we owe mainly to feminist
discussions, emphasizing enaction, the body, interactivity
and performativity, pose the most radical challenge to
computing because they question the key role of the
computing paradigm itself. Depending on how far back we
look in history, we can see ourselves at the end of one
century that focussed on formal symbol manipulation, on
information processing, on computing in the most general
sense as the foundation of cognition, thereby raising the
paradigm of computing to the level of a basic paradigm for
being human. Or we can see ourselves at the end of 2500
years of history of philosophy starting in Greece that has
lead us eventually to ideas like separating the mind from the
body and considering intelligent action on its own.

210

What now, if we take seriously the idea that the history of
bodily enaction of experiences is fundamental for cognition
instead. What is the place of computing in this context?
Computing comes with the aura of disembodiment, of
being abstract and allowing for further abstraction – from
values, from physical needs, from being shaped by different
cultures, from co-evolution with other living beings on a
planet with limited resources. What if we seriously
acknowledge that our human reality is not so? Are we
heading for being disembodied cyborgs or rather for
acknowledging that we are human beings enacting our lives
in unique ways in communication with others and that
computing is to be a part of it? And, if we settle for the
latter, what critical action in computing can we adopt? It is
my conviction that the key to critical action is authenticity,
making our own values explicit, respecting those of others
and reflecting so as to find common steps that we can take.

CONCLUSION
In the twenty first century, the conditions for critical
computing have changed profoundly. While there is a danger
to be critical around computing without any bearing on
what is actually implemented in society, there is also an
opportunity to find new ways for being critical in
computing and on computing that become effective. In order
to do this, a careful analysis of the place of computing in
society is needed and theories for understanding IT and
computing in a social context must take the specific nature
of this technology into account. Going beyond this, we
may challenge the universal claims of the computing
paradigm itself as an objectivist, neutral instance governing
knowledge and decision-making. We might rather emphasize
the role of embodied individuals enacting their personal
histories, reflecting their personal values and thus making
their unique contributions. In the context of Critical
Computing, Kristen Nygaard, in his time and in his own
way, has given an outstanding example of making such a
contribution. Following his example does not mean to
attempt to be like him, but to find our own unique ways,
reflecting our own values and priorities to do so.

REFERENCES
1. Dittrich, Y., Floyd, C., Klischewski, R. (eds.) (2002).

Social Thinking - Software Practice, MIT Press,
Cambridge (MA).

2. Floyd, C. (1987) Outline of a Paradigm Change in
Software Engineering. In: Bjerknes, G., Ehn, P., Kyng,
M. (eds.). Computers and Democracy - a Scandinavian
Challenge. Dower Publishing Company, Aldershot,
Hampshire, pp.192-210.

3. Floyd, C. (1995). Theory and Practice of Software
Development - Stages in a Debate. In: Mosses, P. D.,
Nielsen, M., Schwartzbach, M. I. (eds.): TAPSOFT'95:
Theory and Practice of Software Development, LNCS
915, Springer Verlag, Berlin, pp. 25-41.

4. Floyd, C. (2002) Developing and Embedding
Autooperational Form. In: Dittrich, Y., Floyd, C.,
Klischewski, R. (eds.): Social Thinking - Software
Practice, MIT Press, Cambridge (MA), pp. 5-28.

5. Floyd, C. Ukena, S. (2005) On Designing Ontologies
for Knowledge Sharing in Communities of Practice. In:
Proceedings of Philosophical Foundations of
Information Systems Engineering 2005 (PHISE'05)
Springer Verlag, Berlin, pp. 559-569.

6. Arbejdskollektivet (eds.) (1975) Århus-konferencen
januar 1975 – Arbejdsformer I systemudvikling.
[Working Approaches in Systems Development]
Datalogisk Afdeling, Aarhus Universitet PB-45-46.

7. Bjerknes, G., Ehn, P., Kyng, M. (eds.) (1987).
Computers and Democracy - a Scandinavian Challenge.
Dower Publishing Company, Aldershot, Hampshire.

8. Kyng, M., Mathiassen, L. (eds.) (1997) Computers and
Design in Context. MIT Press, Cambridge (MA).

9. Nygaard, K. (1986). Program Development as social
activity. In Kugler, H.G. (ed.): Information Processing
86 – Proceedings of the IFIP 10th World Computer
Congress. North-Holland, Amsterdam, pp.189-198.

10.Nygaard, K. (1992). How many choices do we make?
How many are difficult? In: Floyd, C., Züllighoven, H.,
Budde, R., Keil-Slawik, R. (eds.): Software
Development and Reality Construction, Springer
Verlag, Berlin, pp. 52-59.

211

