
Published in: G. van der Veer, A. Henderson, S. Coles (eds.): DIS’97 Designing Interactive Systems: Processes, Practices,
Methods, and Techniques, Conference Proceedings, Amsterdam, The Netherlands, August 1997, pp.205-213, 1997.

On the Inevitable Intertwining of Analysis and
Design:

Developing Systems for Complex Cooperations

Anita Krabbel, Ingrid Wetzel,
Heinz Züllighoven

Computer Science Department,
Hamburg University,
Vogt-Kölln-Straße 30,

22527 Hamburg, Germany,
{krabbel, wetzel, zuelligh}

@informatik.uni-hamburg.de

ABSTRACT
Developing interactive software systems requires the well
known tasks of analysis, design and construction. In the
context of work settings with complex cooperations these
tasks and their relationsship undergo drastic changes.
Analysis and design have to be accomplished at different
levels of complexity, the heterogeneity of users envolved
needs to be handled and the presentation of anticipated
changes incorporating the organizational context goes
beyond proven (object-oriented) techniques like
prototyping.

The article claims that complex cooperations require a close
intertwining of analysis and design. It is accomplishable by
application-driven documents usable in different stages of
the development process. Based on a document-driven
evolutionaly approach examples of such document types -
like Cooperation Pictures and Purpose Tables - are given.
They are discussed based on expericences from projects in
different application domains.

Keywords
Cooperative Work, Evolutionary Design, Participation,
Object-oriented Design

1 Introduction
Traditionally, application software development has
focused on the workplace. This was reflected both by the
software product and its development process. Early,
mainframe-based systems automatized individual work
routines, like money withdrawal or money transfer in a
bank. Designing interactive systems of that type meant
identifiying those work processes which occurred
frequently at a workplace and which could be performed in
a standardized way. This was called requirements analysis.
What followed was a sequence of development steps, often
called phases, which followed in some way the well-known
and often criticized assumptions underlying the classical
waterfall model (cf. eg. [Floyd 1987]). The subsequent

software systems showed little application-oriented features
or ways of handling. They were geared towards „data
processing“ and, with there entry fields and menu
selections, can be characterized as „windows on data“. If
more than one user had to work with the system, this was
dealt with through technical concepts like time-sharing or
read-write locking, whithout any explicit model of
cooperation.

With the advent of graphic workstation computers and PCs,
there was a shift from implementing work routines to
supporting everyday work at the individual work place.
This change is reflected in the words by Alan Kay (1977)
"do not automate the work you are engaged in, only the
materials". If, however, application software has to provide
appropriate and flexible components to support the various
ways of working, this called for a different development
process. Most software development methodologies and
software technologies of the eighties were geared towards
analysing, desiging and implementing interactive software
in an application-oriented way. This meant first of all that
the users played a more important role - participation or
user involvement became the key word of the day. It
became obvious that technological and application domain
related issues had to be brought together and that the
evaluation of all design results were critical to the overall
sucess of application software.

As to the product itsself, this changed attitude in software
development showed as well. The electronic desktop
became the predominant design metaphor. A user would
find a set of useful objects of work like documents and
folders plus some more or less generic software tools like
word processors and graphic editors to cope with the
various tasks.

We, like others, quite successfully adopted a variation of
object-orientedness for constructing application software as
a product and combined it with an evolutionary

development strategy based on prototyping [Floyd 1984]
[Bürkle, Gryczan, Züllighoven, 1995]. In our approach, we
focus on a close relationship between the tasks and
concepts of the application domain and the software model.
This is captured in underlying design metaphors
distinguishing those objects which are worked upon, i.e.,
materials, and those which are the means of work, i.e.,
tools. These software tools and materials are offered to the
user together with „small automata“ at his or her electronic
workplace. Building interactive systems for the individual
workplace was done with a good level of quality, usability
and acceptance in various industrial software projects.

Along with the success of these projects came further
demands and problems. Soon, users and user management
called for computer support not only for the individual
work place but for those tasks which can only be handled
through the cooperation of different persons. This demand
was neither surprising nor new. Obviously, it is reflected for
years by areas like distributed systems or CSCW. Still, we
feel that it poses a new set of problems to application
software development which will lead to different
requirements towards analysis, design and implementation.
Looking at current (object-oriented) development
strategies, we can see that, although they claim to cover this
area of software for cooperative work as well, they have
little to offer with respect to the intrinsic problems of
analysing and designing these systems. While mainstream
object-oriented technology ignores these problems (cf.
[Meyer 1990]), development strategies like [Jacobson
1992] or [Booch 1991] addressed them from the viewpoint
of distributed technical systems; [Reenskaug96] focuses on
modeling the different aspects or roles of entities within
cooperative work.

In this paper we will explain why cooperative work is
harder to understand, analyse and support than individual
work at a workplace. We will show, why and how
application-oriented concepts combined within an
evolutionary strategy can help to overcome these
difficulties. The key concept here is an intimate
intertwining of analysis and design. A set of documents will
be presented which smoothly support these development
activites. As this is the focus of our paper, we will only hint
at the design characteristics of the interactive systems
themselves. This was [Wulf, Gryczan Züllighoven, 1996]
[Lilienthal, Züllighoven, 1996] and will be subject of other
papers.

Section 2 of this paper addresses the specific problems with
analysis and design in the context of complex cooperations.
Section 3 then presents our document-driven approach by
giving examples of useful document types and evaluating
their exploitation in our projects. Section 4 summarizes the
results.

2 Complex Cooperations and Problems with Analysis
and Design
In the following we first illustrate the characteristics of
complex cooperations by presenting small examples from
software projects we have done (and are still doing) in two

different domains, namely banking and hospitals. On this
basis we will outline, why cooperative tasks show a new
level of complexity to the software developer. Then we
state a set of requirements for the development process in
order to overcome these difficulties.

The background of the mentioned projects is briefly as
follows: In the hospital domain the aim of one of our
projects was to support a hospital in introducing an
integrated Hospital Information System. We were involved
in two project "stages": the first comprising the analysis of
the situation, a statement of the different requirements, a
rationale for assessing different systems in the market and
the selection of one appropriate candidate. The second, still
ongoing project stage is devoted to the configuration and
use of this system in the light of changing demands.

In the banking sector, we have been involved in different
projects (eg. [Bäumer, Knoll, Gryczan, Züllighoven,
1996]), but we will concentrate on those three projects,
which focus(ed) on the credit business. In all three projects
the aim was to develop an object-oriented interactive
system which supports the different tasks of granting a
credit; the customers, however, being either private persons,
companies or municipalities.

2.1 Characteristics of Complex Cooperative Tasks
What are the main characteristics of complex cooperative
tasks that we find in both domains?

• A multitude of people from different occupational groups
cooperate within a single task.

• Almost every tasks calls for situated action.

• Cooperative tasks require coordination.

Obviously, this is no new discovery. What we will show are
the implications for the software development process and
the techniques and means used.

Starting with the hospital domain, a good example is the
„admission of a patient“ in a hospital which arises a lot of
times each day. It involves adminstrational and
organizational tasks as well as medical and caring work
with the patient. A brief description is given in box 1.

The admission of a patient to the hospital is usually initiated by a
call of a general practitioner or the central hospital bed registrar.
The calls are received either by the admission office or the senior
physician on duty. Each morning the admission office provides a
list with all available beds. The senior physician makes himself
knowledgeable about it. The allocation of beds is made by the
senior physician and the admission office in close cooperation.

When a patient arrives at the hospital he usually brings with him
an admission sheet from the general practitioner on which the
diagnosis is stated. The patient signs an admission contract and is
being questioned regarding his personal data. He receives his
admission contract and stickers on which are printed his personal
data and walks to the nursing unit. The admission of patients
usually occurs in the morning.

On the unit he is questioned further by a nurse. She fills in a sheet
about his physical condition and starts the patient’s record. She
enters his name on several tables for overviews of bed usage,
telephone numbers, diagnosis and treatments. She passes on a
menu card of the patient to the kitchen.

The responsible resident physician examines the patient and fills
in a physician’s order sheet. The nurse copies all the doctor’s
orders into the patient’s sheet. For the (routine) examinations
ordered in the course of admission she fills in the order entry
forms, hands them to the physician for his signature and delivers
them to the corresponding department e.g. X-ray department. She
labels the blood tubes for the blood tests and also fills in order
sheets. If the patient was previously admitted to the hospital she
calls the archive and orders the old patient record.
When the arrangement with the functional departments have been
accomplished the patient goes or is brought to the corresponding
department e.g. X-ray department. The radiology technician
orders the old X-ray bag from the archive if the patient was
admitted before. The result of the examination is dictated on a
recorder by the radiologist and typed directly on the order entry
sheet by the secretary of the chief physician. Sometimes in the
afternoon the nurse picks up the sheet from the X-ray department,
hands it to the resident physician to read and sign, and after that
files it into the patient record.

In the afternoon the admission officer assembles a physician
portfolio and a patient portfolio. The physician portfolio contains
the discharge form and further patient stickers and is sorted into
the patient record. The a patient portfolio remains in the
admission office and contains documents for billing purposes.
Also data is sent to the hospital controlling department.

Box 1: Admission of a patient to the hospital

As apparent from the description the first characteristic of
complex cooperative tasks in an application domain is that
they are accomplished by a multitude of people from
different occupational groups often with highly varied
fields of activity. In the hospital domain the admission of a
patient requires the cooperation between people even in
different organizational units like the admission office,
nursing unit, functional departments, laboratory, archive,
kitchen, gate, secretary of chief physician and the
administration. They all have to work together because their
different skills are necessary to get the task done.

The introductory example from the banking domain is „the
granting of credits to private customers“ which forms a
major business in e.g a savings bank (This example is taken
from [Wulf, Gryczan, Züllighoven, 1996]). Credits are
granted by Customer Advisors. How the actual process of
granting a credit is done, is mostly up to the customer
advisor and the specific case at hand. There may be general
rules within the branch of a bank and there are some legal
restrictions ("Four-Eyes-Principle").

Box 2 gives an overview of the activities in case of typical
credit granting task.

The work procedure for granting a credit distinguishes between
customers that are known to the bank and new customers. Based
on the information available for a customer, the advisor will
usually prepare and conduct the consulting talk with the customer
which will lead to a decision about the credit. For known
customers, information is already available. It can be gathered
from various files kept in the bank. Based on this information, a
customer advisor will usually prepare and conduct the consulting
talk with the customer which will lead to a decision about the
credit. The allocation of customers to advisors is regulated
through bank-internal assignment rules; for example based on an
alphabetical scheme for customer names.

The form for granting a credit is filled by the advisor partly while
talking to the customer and partly afterwards. In addition, a
protocol of the talk is made. Ordering the payment of the credit
can either be done by the customer advisor or by another bank
clerk. Usually, a specific account has to created.
Before the money can be transferred, the granting of the credit has
to be approved by a second customer advisor. For this approval,
various documents may be needed. Sometimes, this is only the
tender offered by the bank, in other cases all available data about
the customer will be checked. If the second customer advisor
approves the credit, the documents are transferred back to the
customer advisor in charge.

Box 2 „Granting a credit to private customers“.

As obvious from the example a second important
characteristic of complex cooperative tasks is that although
they are quite frequent and the individual work steps are
well-known, dealing with a concrete task calls for situated
action (cf. [Suchman 1995]). In our example, most of the
activities can be dealt with when appropriate and not in a
fixed temporal sequence. Some of them are even optional.
The example, by the way, covers the common case, specific
situations may call for different or additional activities.

As a third example we present in box 3 the „registration for
an X-Ray examination“ again from the hospital domain. It
involves a very close cooperation of a few responsible
person.

The physician writes the order on the physicians order form and
puts the order entry sheet in the nurse’s mail basket. A nurse
responsible for looking at the basket fills the relevant data on the
order entry sheet in order to relieve the physician of the burdon to
prepare it himself. Additionally, she enters the test with pencil on
the patient’s flowsheet. Then she puts the order entry sheet in the
physician’s mail basket. Seing the order entry sheet in his basket,
the physician enters the relevant clinical information, signs it and
puts it in the nurse’s mail basket again. The nurse carries the order
entry sheet to the X-ray department. Now the X-ray departement
can schedule the examination under consideration of their work
load and the performing physician can check the order.The chosen
date is conveyed by phone to the unit.The nurse enters the date of
the test in the units calendar to inform the nursing stuff when to
take the patient to the X-ray Department.

Box 3: The registration for an X-Ray examination

A further characteristic of complex cooperative tasks is that
they always means coordination as well. This means, that a
lot of activities within cooperative tasks are performed
solely to coordinate the other activites. In the CSCW
literature this is also called articulation work [Schmidt,
Bannon 1992].

2.2 Consequences for Analysis and Design
We have so far outlined situations showing some
characteristics of complex cooperative tasks. But what does
this mean for application software development? For the
developers it means a new level of complexity and a
problem of understanding the situation at hand.
Traditionally, the situation at hand was dealt with during
the so-called requirements elicitation phase. Here, activities
were more focused towards requirements for the new
system than understanding the current work sitution.
Looking at the domains of our examples a crucial issue
becomes obvious:

Even if the future system is supposed to change current
work activities and procedures, the developers have to
identify and understand the tasks which constitute the core
business of the application domain. It is important to
understand which of the current tasks are important in the
future and therefore have to be supported by the new
system and which tasks will be newly introduced. In
addition, it is crucial to understand, where and how the
future system will change the way in which tasks are
performed. The prerequisite for this is that the current
activities have to be understood, which means that
developers have to understand who does what and why.

But how can developers understand the tasks and activites
of everyday work. In most cases, developers are dealing
with application areas other than their own, ie. software
development. So they have to understand an unfamiliar
domain through some kind of explicit analytical process.
We, like others, have shown, that an object-oriented
approach focusing on the objects and concepts of an
application domain is appropriate for identifiying and
understanding the tasks that are dealt with at the individual
work place (cf. [Bürkle, Gryczan, Züllighoven, 1995],
[Wirfs-Brock, Wilkerson, Wiener, 1990]). But a so-called
behavioral approach of analysing and modeling objects and
concepts falls short, if complex cooperative tasks come into
play. Here, the objects and concepts necessary for coping
with a tasks have to be placed into the context of different
cooperative work processes. In addition, those items and
activities have to be identified which help in coordinating
the cooperative tasks.

A summary of the main difficulties in analysing complex
cooperative tasks should give rise to requirements for a
different approach to software development in this context:

• The overall situation is highly complex. It is extremely
difficult, for example, to get an overview of the various
types of banking credits and the different procedures for
granting a credit. In a hospital, it is next to impossible to
gain an "analytical" understanding of all the potential
tasks related to a single patient case. While we can
question the possibility of a software developer ever
completely understanding the complexity of one of these
application domain, it is certainly impossible to have an
initial requirements specification stage where all details of
the situation at hand can be analysed and modeled
adequately. Despite this complexitity, software developers
need a process leading from initial to a growing
understanding of the sitution on different levels of
abstraction.

• Software developers are no application domain experts.
Even after developing systems in one domain for years
they will lack a profound understanding of the many
application concepts and the actual work procedures. This
holds even for developers who have formerly worked in
the application domain. While this is a general problem of
application software development, cooperative work
makes the situation more critical. Here, an understanding
of various tasks and subtasks from the viewpoint of
sometimes different professions is required. In a banking

project which dealt with customer consulting, for
example, some of the developers had started their
professional career as banking representatives, even as
customer consultants. They saw themselves as domain
experts. Despite this background, they simply overlooked
to analyse and model some important sub-tasks which
were dealt with by backoffice clerks. They had lost the
insight into current work processes and a new division of
tasks. As a consequence, a more direct contact to the
situation at the work places is of crucial importance. A
mere analysis of information and data flow among
different „data processing units“ based on form sheets or
legacy software will be of little help.

• No single person from the application domain will
understand the overall situation to a sufficient degree in
order to communicate it to the developers. This is
complementary to the problem just stated. In a workshop
with various representatives of a hospital, for example,
some doctors remarked during the discussion of
cooperation pictures (cf. next section) that they never had
an idea about the usefulness of certain form sheets they
had to fill and send to the admission office. This example
shows the need for a fresh look at participation or user
involvement (cf. [Lilienthal, Züllighoven, 1996] [Krabbel,
Wetzel, Ratuski, 1996]). It is not only a matter of
democracy at the work place or other political or ethical
considerations but also a mere factual neccessity to
integrate the different parties from the application domain
into the development process.

So far we have outlined the intrinsic difficulties of
analysing and understanding complex cooperative tasks.
What are the difficulties of designing the future system?

• It is a general but fundamental problem that, at the start of
a software project, no one can completely envision the
future system. As just said, the developers lack a detailed
understanding of the application domain. Of course, this
was true with application software for individual work
places. But here, a desktop approach could overcome
some of the problems, as a fairly general set of tools and
materials put at the disposition of the user, could be
utilized, when and how appropriate. With cooperative
work, however, developers have only vague ideas about
an appropriate way of organizing future tasks and
business processes. Certainly, the superficial and
technical concepts of current business process
reengineering methods won't help. While it is valuable in
the development of work station software to gain
inspiration by looking at good examples of available
systems, this is almost no option in the area of complex
cooperative work. Of course, there is a wealth of research
and development in the CSCW area. But this is of interest
to acadamia mainly and offers little remedy for the
problem at hand, as these systems are mostly not available
of demanding as to resources. And software on the market
in this area is uninspiring at best.

• Application domain experts may have some ideas about
the relevant tasks and related acitivties which could in
principle be supported by software. But they usually lack

an understanding of the technical means and potential of
computers. Frequently, we were confronted with "visions"
of the future system which drew from the year-long use of
legacy systems on mainframes with menus and forms or,
at the other extreme, from a mix of sci fi movies and
game computers. As a consequence, both the development
process and the techniques and means to design the future
product have to take into account, that the vision of the
future system will evolve during a software project.
Emerging new ideas will have to be tried out, some will
prove inadequate, leading to changed concepts, etc. It is
crucial to find a way from the current situation to a
common vision which can be shared by all the different
parties envolved.

• During the development process, there will be different
and conflicting views and interests regarding the future
system. In a system supporting cooperation, it is crucial,
however, that the different sub-tasks and work processes
link smoothly. Given all these different opinions, there
cannot be one best solution decreed from "above".
Instead, a satisfying compromise has to be found among
all parties concerned. Here, the design process becomes a
negotiation process. Seen from a system developer’s
view, these negotiations should be based on adequate and
fairly realistic models, which are both understandable
objects of discussion for domain experts and useful
development documents. The development process then
has to take into account that revisions of these models due
to subsequent insight or changed circumstances will not
jeopardize the whole design.

3 The Document-Driven Development Process
Having highlighted the specific problems of developing
applications systems to support cooperative work settings,
we now describe our approach to overcoming these
problems. We will introduce a set of documents,
representing the different models of the application domain
and the software system, and a strategy of how to conduct
and organize the development process itself.

3.1 Reducing Complexity
As a major problem in analysing complex cooperations we
have identified their overwhelming complexity in the face
of continuously changing demands and requirements. So,
first of all we need a means to make this complexity
manageable. The key to solution is well-known -
abstraction. Accordingly, our approach is based on a set of
documents, which allow for different level of abstractions
for each of the central analysis and design issues.

3.1.1. From the Individual Workplace to the Overall
Situation to the Coordination
A major development task is to analyse, understand and
model the work as seen from the various workplaces
involved. Here we use well-proven techniques like
qualitative interviews together with scenarios, a glossary
and system visions (cf. [Bürkle, Gryczan, Züllighoven,
1995]). Scenarios, for us, identify the work tasks at a
certain workplace and describe the present way of
accomplishing these tasks with different means and objects

of work. Glossary entries define the terms and concepts
used in the application domain. Focusing on design,
systems visions are "future scenarios" that anticipate work
situations utilizing the future software system.

Scenarios and system visions capture the perspective of the
individual workplaces with their respective views of
cooperative work. These individual pespectives frequently
lack insight into the nature of cooperative processes. As an
example, the nurses of a ward had no idea about the
purpose of certain documents they had to prepare and to
deliver to the administration. But it is important to get the
overall view, ie. to understand which are the main so called
joint tasks [Krabbel, Ratuski, Wetzel, 1996] of an
organization being accomplished in cooperation across
department boarders.

For this reason Cooperation Pictures are used (cf.
[Krabbel, Ratuski, Wetzel, 1996] and Figure 1). They
provide a graphical visualization of concrete cooperations
in order to accomplish a joint task. Accordingly, they
represent the involved (work) places or roles and the
cooperation between them. Places and roles are visualized
by symbols with names. In the hospital project, we
distinguished between places outside and inside the hospital
and certain roles like a chief physician which could not be
related to a stable location. Cooperations are represented
by annotated arrows. In the hospital context we had the
delivery of documents by the hospital staff, phone calls,
data exchange via computer and the patient making his/her
way to the different units of the hospital. The arrows were
annotated by pictograms indicating these different kinds of
cooperation. It is possible to refine or coarsen these
cooperation picture. A more detailed picture eg. could focus
on the process of an X-ray examination, were numbers are
added to the arrows in order to indicate work sequences for
a typical case.

 admission
office

nursing
unit

X-ray
depart-
ment

adminis-
tration secretary

of chief
physician

gate

kitchen

laboratory

archive

general
practicioner

home

central
bedregister

health
insurence

relatives

typist

resident
physician

senior
physician

Figure 1: Cooperation Picture „Admission of a patient“ in the hospital
domain

As a characteristic of modeling cooperative work, it is
necessary to identify and represent the specific coordination

activities. This is not adequately represented in the
documents described so far.

As a basis, we have to understand the purpose of the
exchanged documents or of the explicit coordination
processes. Only then, the concrete actions of a task can be
evaluated and consequences for the design of the future
system can be outlined. Here, we apply Purpose Tables (cf.
[Heeg 1995]) as a representation technique. In purpose
tables, we describe the cooperative task devided into Who -
does What - with What or Whom - for what Purpose. The
focus of this table is to identify the different purposes or
implications of each individual task.

Figure 2 shows the registration of a patient for an X-ray
examination. A first look might only show the registration
of a patient for an X-ray examination. Only by looking at
the purposes, it becomes clear that a lot of cooperation and
coordination is involved: the nurse is informed about the
examination and thus about the treatment of „her“ patient.
In addition, the entry in the patient’s flow sheet makes the
registration visible to other physicians and nurses with
subsequent medical or nursing consequences.

Single Activities of an Order Entry Purpose/Implications

Physician writes the order on the

physicians order form.

It is documented who ordered the test at

what (forensic, quality assurance).

To kick on the implementation of the

test.

Physician puts the order entry sheet in

the nurse’s mail basket.

Nurse is alerted that she has to act. She

knows what is planned with her patient.

Nurse enters patient’s name, other

relevant data and the type of test on the

order entry sheet.

Nurse prepares the order entry sheet in

order to relieve the physician of such

burdens.

Nurse enters the test with pencil on the

patient’s flowsheet.

It is documented for every member of

the care team and physicians when the

examination was ordered and to which

further examinations he is scheduled.

Nurse puts the order entry sheet in the

physician’s mail basket.

Physician knows that he has to validate

the order.

Physician sees the order entry sheet in

his basket, enters the relevant clinical

information, signs it and puts it in the

nurse’s mail basket.

The physician that carries out the test

knows what to do and that the ordering

physician is responsible for the test.

Nurse carries the order entry sheet to

the X-ray department.

The X-ray departement can schedule the

test and the performing physician can

check the order.

Radiology technician chooses a date

for the test and conveys it by phone to

the unit.

The tests are coordinated within the X-

ray department. The nurses know when

to take the patient to the X-ray

Department.

Nurse enters the date of the test in the

units calendar.

Whole nursing stuff knows about the

date.

Figure 2: Purpose Table of the registration for an X-Ray examination

3.1.2 Tackling the Complexity of the Development Process
The“ abstraction“ paradox: In order to get an overview of
the overall situation a detailed understanding of the
different tasks is mandatory, while one cannot understand
the different tasks without an overview.

The obvious problem of the development process for
cooperative work is how to solve the "abstraction"
paradox: an overview of the overall situation can only be
achieved by understanding the individual tasks and ongoing
activities. We have said that developers don’t have this kind
of knowledge and that domain experts usually can overlook
only those parts which are related to their own work. But it
is impossible for the developer to aquire this understanding
by an initial detailed analysis of the situation at hand.

The only possible solution of this paradox is to live with it.
We try to iterate between an analysis of individual tasks and
a synthesis of the different cooperations as part of the
overall situation. Well knowing that this is always vague
and incomplete at the beginning and can converge only by
frequent feedback loops and involvement of domain
experts.

Accordingly, we use the different representation techniques
for the detailed description of tasks at individual
workplaces, general representation of joint tasks and again
detailed representation of coordination work. Evolutionary
development principles tell us, however, that there is no
project state devoted to for example to prepare "all"
scenarios or cooperation pictures.

Iteration between the detailed analysis on the task level and
an overall synthesis on the level of cooperations seems to
be the key to solving the abstraction paradox.

The „design“ paradox: One cannot design an application
system without analysing the current situation in the
application domain, but a vision of the future system is a
prerequisite for analysis.

Both developers and users have to understand the current
tasks and work processes in order to get a vision of the
future system support. But they will not know what
situation to look at and to which detail, if the future tasks
and the system support is unclear. Here, the intentional
intertwining of analysis and design can be a remedy. A
preliminary understanding of the potential future situation
has to be expressed in models which can be revised or
discarded quickly and easily. This is were domain-related
documents and prototypes come together (cf. [Bürkle,
Gryczan, Züllighoven, 1995]).

The „product“ paradox: Building software support for
cooperative work, one has to evalute an operative system,
in order to really assess its feasibilty and suitability, but it
takes an unforeseeable effort to build this system.

The answer to this problem is again an evolutionary
approach, but on a different level. It means to dissect a

seemingly monolothic system, like The Hospital
Information System, into a minimal application kernel
planned in extensions. The kernel has to be operative and
has to satisfy urgent needs of the organization.
Additionally, it should support tasks of key units or
departments which show a high cooperation profile. And it
needs to supply basic cooperation and coordination means.
Therefore, identifying the kernel and determining
extensions of an application system for cooperative work is
by no means a trivial task. While we have stressed the
priority of domain-related features, technical kernel
facilities like openness, extensibility and appropriate
database interfaces have to be considered as well.

As an example, Figure 3 shows a sketch of the application
kernel system with some extensions of the hospital project.

patient-
administration
and billing

admission/transfer/
discharge

procedures code

communication

sy
st

em
 k

er
ne

l

kitchen
system

laboratory
system

radiology
system

archive
system

surgery
system

administration
system

...

...

Figure 3: The application kernel (with extensions) and subsystems

3.2 Supporting Group Processes

The second group of problems identified in Section 2.3 had
to do with group processes. We have to make sure that the
different groups can actively participate in the design
process. They have to understand key documents about the
current situation and the future system. These document
should also support the negotiation processes about work
situations, present and future and the different interests and
viewpoints involved. So all domain-related representation
techniques and documents need to be understandable for
very different user groups, easy to apply and stimulative for
the communication and negotiation process.

3.2.1 Documents as Materials of Work and Communication
Base
Szenario, System Visions and Glossaries are written in the
professional language of the application domain. So they
are obviously understandability for at least the domain
experts. Feed back cycles from users will be easy.
Moreover, the Glossary makes terms and notions explicit,
thereby supporting the formation up of a common project
language. The only obstacle is the lacking domain
knowledge of the developers. Therefore, they have to write
these documents, based on interviews, while the domain

experts act as reviewers. In these learning cycles developers
quickly catch up the respective professional language.

Cooperation Pictures are used in joint workshops with
representatives of all user groups. They serve as a high-
level represention of a situation, when prepared in advance
and explained by developers or they can be used as a means
for actively aquiring knowledge about a joint task by
„interactively“ drawing and pasting their elements on a wall
paper. Due to the use of everyday pictograms and their
lacking formality, their meaning and usage can be grasped
by almost everyone in minutes.

Cooperation Pictures are also a valuable means for
questioning the adaquacy of the current work processes.
They provoke questions like What are the reasons for a
particular work process and What are the essential
cooperation links to other departments. In the hospital
project it was surprising for all participants of an analysis
workshop that during a regular admission of one patient in
the morning up to 17 phone calls and a series of errands had
to be made. Immediately a discussion arose about which of
the phone calls or errands were avoidable in general and
which could be eliminated by using the future system.

PurposeTables provide a structured document written in the
language of the application domain. While users will rarely
prepare Purpose Tables on their own, they can use them
after a short introduction to analyse and discuss details of
work processes and the purpose of individual activities.

Purpose Tables are employed selectively to identify the
purpose and dynamics of key coordination patterns. In the
hospital project they were eg. used in the decision of
whether the signature from the physician would still be
required for every X-ray registration. It turned out that this
was seen necessary for reasons of quality assurance by the
radiologists.

3.2.2 Making the Development Process Manageable
Beyond using domain-related documents it is important to
make the development process itsself understandable and
manageable.

Our approach is based on the concept of an application
kernel with domain-related extensions. Using these, domain
experts can enter a discussion about which extensions will
support which task; what are the interrelations between the
cooperative tasks and extensions; what are the priorities for
realizing these extensions. Figure 4 shows an application
kernel with extensions indicating the interdependencies
between the tasks supported by these extensions.

Both in banking and in the hospital projects, users and user
management pretty soon grasped the idea of the application
kernel with extensions and used numbers to name the
various extensions, which they could relate to familiar
cooperative tasks. Even in discussions outside the software
project they kept talking about „application kernel“ or
„extension 2“.

patient administration

patient billing

A/T/D (at wards)

bed census

nursing workload

procedures coding

examination request discharge letter

scheduling
result writing

result transmission

nursing documentation patient record medical documentation

0

1

2

3

4

5

Figure 4: The application kernel with its extensions.

3.3 Anticipation of the Future System
While prototyping is very useful in designing interactive
systems for individual workplaces, one prototype will not
overcome the problem of assessing the interplay of the
different parties involved in cooperative work. We at least
need distributed prototypes; and frequently, we need
different prototypes for the different roles and subtasks
involved. In addition, the coordinating activities should not
be overlooked, when transfering objects or means of work
into application software components. Last, but not least,
we have to cope with the high degree of situatedness in
many cooperative tasks.

3.3.1 Anticipating Future Cooperation and Devision of Work
While system visions can provide a good overview of the
future tasks and the general features of the application
system, they have little „analytic“ power, ie. the cannot be
used easily to access the future work situation. Here,
Cooperation Pictures can help. Figure 5 gives an example
from a banking project. This picture initially showed the
„status quo“, ie. the current distribution of work and
process sequence for a „default“ case of granting a credit.
In a workshop the involved bankers discussed with the
development team alternatives for both work dsitribution
and process, by changing the picture as a basis for What-if
questions. Here, an analysis of the Cooperation Pictures
indicates nodes of high communication and cooperation
„traffic“. In Figure 1 one can for example easily see that the
nursing unit and the admission office are focal points of this
type. So, the same presentation techniques can be used for
analysis and design purposes. Additionally, Cooperation
Pictures can be used to indicate different extensions of the
system kernel,e.g. by changing arrows being effected by a
(next) extension. Eg. errands will get substituted by
electronic document exchange.

 .
Voucher

Acquisition

Controlling

Back office

Head of
Dept.

Bookkeeping

Municipality

Credit contract

Order form Mail
folder

Mail
folder

Mail
folder

1

2

3

4

5

6

8

7

Figure 5: Cooperation Picture for „granting a credit“

For developers following an object-oriented approach the
glossary entries provide the basis for designing the domain-
related class hierarchy. Frameworks and design patterns
then are used to achieve a proper fit between domain-
related and technical design [Riehle Züllighoven 1995],
[Bäumer, Knoll, Gryczan, Züllighoven, 1996].

In the context of cooperative work we have to take care,
however, not to overlook the specifics of cooperation and
coordination. When analysing existing means and objects of
work, it is crucial to understand the role of these things in
cooperation contexts. If a decision is made not to transfer a
certain entity into the software system, the developers have
to provide substitutes, if these entities help to coordinate
cooperative activities. Problems of this type can be tackled
by using Purpose Tables. They indicate the implications of
modeling or omitting certain things or their characteristics.
In one banking project, we have discussed the
consequences of not modeleing the order sheet as an object
of its own right but going straight from an aquistion tool to
the credit contract. We found out that the order form was
important for indicating the state of the credit granting
process as well, at least for the controller.

3.3.2 Designing Support for Future Cooperation
Understanding the implications of cooperative work and
activities is the precondition for designing the future
system; but it does not automatically lead to an appropriate
design of an interactive system. With respect to the
individual workplace, we have shown [Bäumer, Knoll,
Gryczan, Züllighoven, 1996], [Bürkle, Gryczan,
Züllighoven, 1995]. that the Tools & Materials Approach
can direct the developers towards this goal. In the context
of cooperative work, however, more considerations are
needed. First, we have to answer the question, how can we
support future cooperation, if this cooperation is going to
change while we are building the system or because we
introduce a software system with a certain degree of
unforeseeable effects on cooperation.

Here, the answer is similar to the one, Tools & Materials
provide for the individual workplace: If you cannot foresee
the details of future cooperation, don’t implement fixed
cooperation and coordination processes into the system. In
order to avoid the workflow pitfall, we have proposed the

concept of process patterns (cf. [Gryczan, Wulf,
Züllighoven, 1996]). In short, they reify the cooperation
and coordination process as documents for the users and
make these patterns subject to situative changes and
amendments.

Finally, it is again the process of going from the application
kernel to the stepwise addition of extensions which puts
both domain experts and developers in a position, where the
can envision the future system in „stepwise refinements“,
going from vague initial ideas to more a growing
understanding of what an interactive support can be, as the
first building bocks of the system are put into use.

4 Summary
In this paper we addressed specific software development
problems related to complex cooperations. Using examples
from the banking and hospital domains we started by
characterizing these applications. Tasks with complex
cooperations involve a multitude of different user groups,
need a flexible situative execution and include various
coordinating activities.

Based on these characteristics we outlined specific
problems of analysis and design. First, analysis of the
current work practise is a crucial activity distinct from
requirements analysis. Analysing the current work practise,
however, is not easy because of the intrinsic complexity of
cooperative settings. Furthermore, neither the developers
nor the users are able to understand all the relationships and
dependencies in full. In design neither developers nor users
have a clear picture of the desirable system support. This is
due to the lack of successful existing examples as well as to
the difficulty to anticipate and communicate about the
future system. Additionally, the design of the future system
has to be a process of continuous negotiations between the
different and often competing groups involved.

In order to overcome these difficulties we presented a
document-driven development process. It is based on
domain-related document types. Characteristics of our
approach are:

For reducing complexity we use domain-related document
types on different abstraction levels leading from the
individual workplace to the overall situation to coordination
activities. Preparing these documents we need rapid
iterations between analysis on these different abstraction
levels.

For supporting the negotiation problem we presented
documents that can be applied in workshops and group
discussions. For making the development process
manageable by all parties involved the future system needs
a kernel with well-understood extensions according to
domain-related criteria.

For solving the anticipation problem we use the same
documents to discuss potential changes of cooperative work
on the basis of a potential system support.

Using the same document types for the manifolded aspects
during analysis and design allows a close intertwining
between these different activities. This intertwining alone

guarantees stepwise understanding and design of well
defined system components that match user requirements by
making them more explicit.

REFERENCES
Bäumer, D., Knoll, R., Gryczan, G., Züllighoven, H.

(1996). Large Scale Object-Oriented Software-
Development in a Banking Environment - An Experience
Report. In: Pierre Cointe (Ed.): ECOOP’96 - Object-
Oriented Programming, 10th European Conference,
Proceedings, Springer Verlag, Linz, Austria, July 1996,.
pp. 73 - 90.

Booch, G.: Object Oriented Design with Applications,
Redwood City, CA: Benjamin/Cummings 1991.

Bürkle, U., Gryczan, G., Züllighoven, H. (1995). Object-
Oriented System Development in a Banking Project:
Methodology, Experience, and Conclusions. In: Human-
Computer Interaction, Special Issue: Empirical Studies of
Object-Oriented Design , Volume 10, Numbers 2 & 3,
1995, S. 293-336. Lawrence Erlbaum Associates
Publishers Hillsdale, New Jersey, England.

Floyd, C.: A Systematic Look at Prototyping. In: Budde,
R.; Kuhlenkamp, K.; Mathiassen, L.; Züllighoven, H.
(Hrsg.): Approaches to Prototyping, S. 1-18. Berlin:
Springer 1984

Floyd, C. (1987). Outline of a paradigm change in software
engineering. In G. Bjerknes, P. Ehn, & M. Kyng (Eds.),
Computers and democracy – a Scandinavian challenge
(pp. 191–210). Aldershot, England: Avebury.

Heeg, G. (1995): Objektorientierte Systeme. In:
Fachseminar Objektorientierung, Systems-Kongreß 1995,
S. 81-90

Jacobson, I. (1992). Object-oriented software engineering
– A use case driven approach. Reading: Addison-Wesley.

Krabbel, A., Ratuski, S., Wetzel, I.: Requirements
Analysis of Joint Tasks in Hospitals. In: B. Dahlbom et al.
(eds.): IRIS 19 ”The FutureÓ, Proceedings of the 19th
Information systems Research seminar In Scandinavia,
August 1996 at L_keberg, Sweden. Gothenburg Studies in
Informatics, Report 8, June 1996, pp. 733-749

Krabbel, A, Wetzel, I, S. Ratuski:, S.: Participation of
Heterogeneous User Groups: Providing an Integrated
Hospital Information System. In: J. Blomberg, F.
Kensing, E. Dykstra-Erickson (Eds.): PDCÕ96
Proceedings of the Participatory Design Conference,
Cambridge, Massachusetts, November 1996, pp. 241-249

Meyer, B.: Objektorientierte Softwareentwicklung.
München: Hanser 1990

Reenskaug, T. (1996). Working with Objects. New York:
Prentice-Hall, 1996.

Riehle, D., Züllighoven, H. (1995): A Pattern Language
for Tool Construction and Integration Based on the Tools

and Materials Metaphor. In: James O. Coplien and
Douglas C. Schmidt (Hrsg.): Pattern Languages of
Program Design. Reading, Massachusetts: Addison-

Schmidt, K.; Bannon, L. (1992): Taking CSCW Seriously:
Supporting Articulation Work. In: Computer Supported
Cooperative Work: An International Journal, 1 (1992) 1,
S. 1–33.

Suchman, L. (1995): Making Work Visible. In:
Communications of the ACM, 38 (1995) 9, S. 56–64

Swartout, W., Balzer, R. (1978). On the inevitable
intertwining of specification and implementation.
Communications of the ACM, 25(7), 438-440.

Wirfs-Brock, R.J., Wilkerson, B., Wiener, L.: Designing
Object-Oriented Software, Englewood Cliffs, NJ: Prentice
Hall, 1990

Wulf, M., Gryczan, G., Züllighoven, H.: Process Patterns
- Supporting Cooperative Work in the Tools & Materials
Approach, Information systems Research seminar In
Scandinavia: IRIS 19; proceedings, Lökeberg, Sweden,
10 - 13 August, 1996. Bo Dahlbom et al. (eds.). -
Gothenburg: Studies in Informatics, Report 8, 1996. S.
445 - 460.

