In: Floyd, C., Ziillighoven, H., Budde, R., Keil-Slawik, R. (eds.): Sofiware Development
and Reality Construction. Berlin: Springer, pp. 86-100, 1992.

Software Development as Reality Construction
Christiane Floyd
Reality = Community

/. Foerster 73/
1. Introduction

I would like to present a view of software development as an insight-building process in terms
of multiperspectivity, self-organization and dialogue, drawing on epistemological ideas that

have emerged from the discourse in Rational Constructivism.

I have come to this view in the course of my recent research on epistemological foundations
of software development!, which was motivated by many years of preoccupation with
software development methods in my research, teaching and practical work. It was during this
period, first in industry and since 1978 at the Technical University of Berlin, that I began to
question the validity of the established models of thought in software engineering as the sole
foundation for our work as computer scientists. I gradually became convinced that we need to
arrive at a sufficiently rich understanding of software development if we want to facilitate it

with methods in a meaningful way.

My doubts apply, in particular, to the following basic assumptions of the discipline: its view
of software development as the production of program systems on the basis of fixed
requirements; the separation of production from use and maintenance; the division of
production into linear phases; the almost exclusive use of intermediate results in the form of
documents; the view of methods as rules laying down standardized working procedures to be
followed without reference to the situation in hand or the specific groups of people involved;
and the one-sided emphasis on formalization at the expense of communication, learning and
evolution. The resulting critique of software engineering has been elaborated in a number of

papers 2.

I will gladly concede that I know of scarcely any author today who still accepts these

assumptions without reservations. They are looked on rather as ideals that can only be

1 This research was funded by a grant from the Stiftung Volkswagenwerk

enabling me to spend my sabbatical term in Palo Alto from September 1987 to March
1988.

2 cf. /Floyd 81/, /Floyd, Keil 83/, /Floyd 84/, /Floyd 85a/ and /Floyd 87/

approximated in practice. There have, however, as yet, been few efforts to develop conceptual

alternatives to the established tradition of thought in software engineering.

One of my reasons for questioning the validity of this tradition were the glaring contradictions
between what it postulates and the reality of software projects in both industrial and academic
settings, despite the fact that many of these projects were ostensibly conducted along
traditional lines. I by no means wish to contend that the production view of software
development is irrelevant. But it does seem to me to hold only in part — for specific, well-

defined partial goals — failing to do justice to software development as a whole.

Another reason for my doubts about the validity of the established view was its failure to take
into account the quest for quality3 in software development. Ultimately, it neglects to provide

any sort of foundation for human-oriented system design.

It seems to me a richer view is needed here. And it was this realization that induced me to
seek for suitable epistemological foundations for software development. Such foundations
must help us to understand specific, communally sustained, coordinated processes of
cognition in which different domains of reality meet. In these processes, abstract — and at the
same time highly complex — results are obtained, and the emergent technical reality of the
software is interwoven with the social reality of its production and use. These processes take
place against a background of social conflicts, changing needs and limited resources and lead

to insights regarding the desired software and its use.

The soundest alternative thought model available, to my mind, is Peter Naur's view of
programming as "theory building"4, which has been very influential in shaping my own ideas.
However, Naur says little about what theory building consists in. And he does not account for

the interpersonal nature of communal theory building.

As 1 see it, software development is, first and foremost, a specific instance of design. By
design I understand the creative process in the course of which the problem as a whole is
grasped, and an appropriate solution worked out and fitted into human contexts of meaning.
In Naur's words: "Software development is an activity of overall design with an experimental
attitude" (/Naur 74/).

To establish foundations for design, I draw here on epistemological insights that have

emerged from the constructivist discourse, notably on the work of Heinz von Foerster and

3 A term coined by Don Knuth in his reflections on the errors he made in the
development of the TEX system (/Knuth in this volume/).
4 cf. /Naur 84/ and /Floyd 1.1 this volume/

Gordon Pask>. Their ideas are, | feel, particularly conducive to understanding the process of

software development as design.

In the following section, I begin by outlining the postulates of the established software
engineering tradition, subsuming them under the general term production view of software
development. My aim is to show that these postulates are of a perspective nature. They were
invented from a particular viewpoint to highlight a particular facet, necessarily obscuring

others. Which brings us straight to a key insight of constructivism.

In section 3, I introduce some important elements of constructivist thinking and relate them to
our present subject. I refer specifically to the school of thought labelled Radical
Constructivism. Of interest to us are the insights it provides concerning the emergence of
knowledge in different areas. Our task will then be to explain, in the light of these insights,

the specific types of cognitive processes that are important for software development.

In section 4, I attempt to elaborate a suitable concept of design for software development.

Design is not primarily tied to predefined goals, but is governed by the quest for quality.

In section 5, I then go on to unfold the design space. It consists of the interlaced domains of
reality — application, methods and means of implementation — that are constructed during
design. Unlike the production view, there is no assumption here of a phase-specific, temporal
transition from one domain of reality to another; we are dealing rather with a vibrant structure

of ever new and ever finer distinctions, "dancing", as it were, in time.

In section 6, the cognitive processes taking place in design are characterized as a web of
decisions linking together the domains of reality important for design. The suitability of a
design decision is determined through its evaluation. Where feedback is permitted from the
evaluation to the design process, we have closure, the results of design again forming the
basis for its further development. Successful design is marked by a stabilization of the web of

design decisions through revisions.

What we have said so far also applies to design processes carried out by individuals. In
section 7, though, we go on to look at communal design implemented in terms of dialogically
organized cooperation. This allows for a conscious dialogical orientation of design in which
the "I and Thou" of software development is acknowledged in the basic relations "I develop
software with you" and "for you" and. This orientation directly incorporates the element of

responsibility in our technical work.

5 cf. /von Foerster, Floyd/ this volume

In the final section, I examine the way this view affects training, project organization as well

as the development of methods and tools for software development.

What emerges, in general terms, is a view of design as consisting of interlocking, living
processes that are sustained by us, that may atrophy, degenerate or unfold. Their unfolding
presupposes both sufficient autonomy of design and the ability and willingness on the part of

those involved to engage in multiperspective reflection.
2. Software Development as Production — a View and Its Limits

In this section, I wish to outline what are to me the essential issues and show how I set about
tackling them. A practicable approach to epistemological inquiry in our domain has been
shown by Winograd and Flores®. The established view, the authors argue, only appears to be
self-evident to us as long as we remain within the rationalisitic tradition, which is
characterized by them in terms of its postulates and underlying assumptions. (Actually, we are
not only concerned here with the rationalistic tradition as a theory about our way of thinking,
but also with the realistic tradition as a conception of reality.) This tradition, however, like
any other, involves a certain "blindness" by obstructing our view to its underlying

assumptions.

Winograd and Flores translate the notion of rationalistic tradition into more concrete terms by
deriving from it assumptions relating to different subject domains. Related specifically to the

domain of software development, it justifes the following assumptions:

. There is a given reality "out there" which we come across during software
development. By analyzing the facts of this reality, we obtain requirements for the

software.

. The essential task of the software developer is — starting from the problem defined in

that reality — to find a correct solution in the form of a program system.

. It is possible to separate the production of software from its use. Software engineering

is concerned with the production of software on the basis of fixed requirements.

. Software production is based on models representing reality. Models should map

reality precisely.

6 in /Winograd, Flores 86/

. The whole process is largely independent of individuals. For one and the same
problem, different developers should arrive at the same results. The developers should

be interchangeable.

. Communication should be restricted and regulated via fixed interfaces. The division of
labour can be worked out on an ad hoc basis. Subject to technical feasibility, any

desired parts of the production process can be automated.

. The developer's responsibility covers — only — proper construction of the product in
accordance with the requirements specification. Any ethical considerations that go

beyond this are quite separate from the technical aspects of the work.

The view of software development reflected in these assumptions has been instrumental in
bringing about impressive advances in programming methodology, in generating controllable
models for project execution, and in promoting the development of tools on this basis. It
allows us to understand important aspects of software development prior to initiation of the
development process, to subsequently assess more or less completed projects - or to "fake" a

rational design process as suggested by Parnas’ .

It fails, though, to offer any help in understanding the software development processes
actually going on in a given situation — processes relating to the emergence of insights into
the functionality, implementation and usability of programs. Indeed, the production view is
misleading, suggesting as it does that we can (must) proceed from fixed requirements and can

derive a program system from these (ideally, in accordance with fixed rules).

The production view highlights one important facet of software development, eclipsing
others. In my opinion, it obstructs our view of design. The pervasive nature of design and thus
the key role occupied by it is also recognized by other authors. Winograd and Flores, for

instance, have given their above-cited book the subtitle "A New Foundation for Design".

Questioning the rationalistic tradition necessarily involves examining other epistemological
approaches. I shall confine my attention here to constructivist ideas. They fit in perfectly with

the facet I have chosen to focus on: software development as design.
3. Entering into the Constructivist Discourse

Studying constructivist approaches was no easy matter for me. They call for a radical process

of rethinking which I can only accomplish step by step. In addition, the available primary

7 cf. /Parnas, Clement 1985/

literature on the subject is heterogeneous and chiefly concerned with domains outside my own
particular sphere of interest. This is due to the fact that the key insights have been derived
from a variety of sources, including biology and developmental psychology, and subsequently
applied to the social sphere. But retracing this process is not our concern here. Nor are we
able, within the present context, to explore just how far these insights can be applied to other

spheres.

Radical Constructivism as a school of thought has grown out of Cybernetics and is closely
related to chaos theory. What we are dealing with here is the emergence of phenomena, in our
case with cognition as the emergence of insights. Since there is no one overall, clearly
elaborated constructivist position, but rather a variety of related approaches — differing quite
considerably in detail — that blend into a common mind (cf. /Bateson 79/), one can justifiably
speak of a constructivist "discourse" 8. The various authors are involved in the ongoing
scientific discussion within their own particular disciplines, but they go beyond the "what" of
their respective subject to look at the "how" of the emerging insights, discovering as they do

related patterns within the different disciplines.

It would be asking far too much to expect me to give a proper introduction to constructivism
within the present context. Nevertheless, I shall attempt to outline at least its essential

fundamentals in order to be able to refer back to them later on.

According to constructivist views, our cognitive faculties are ultimately rooted in the
biological nature of the human being and his co-evolution with all other living beings.
Bateson, an important pioneer of constructivism, postulates the essential unity of mind and
evolution (/Bateson 79/). Maturana considers cognition to be inherently tied up with life
(Maturana, Varela 80/).

Mind, in this sense, not only characterizes the individual human being, it is also encountered
in other living systems. Mind is also invariably related to something. Thus, mind
characterizes the way communities interact with respect to common concerns. For example, a
group of people interacting in a project when developing software might exhibit mind. Here,

deeper insights emerge by careful contrasting and coordination of individual contributions.

In constructivism, a distinction is made between epistemology and ontology (/v. Glasersfeld
87/) in a subtle way. Constructivism teaches us that we construct what we know; it makes no
mention here of being. In constructivist thinking, cognition is not concerned with images

mapping a given reality; instead, we construct knowledge in such a way as to make it fit our

8 This is reflected in the German title of an excellent survey on Radical
Constructivism, cf. /Schmidt 87/

purposes. Von Glasersfeld suggests to talk about the viability of our knowledge rather than

about truth or falsehood. This notion seems quite natural in connection with design.

An essential element here is the introduction of the observer. Cognition is invariably tied to
an observer (cf. /von Foerster 84/ and /Maturana, Varela 80/). Observers can only perceive
what they are in a position to perceive. Communication between observers takes place in

consensual domains that are mutually accessible.

Also tied up with this is the concept of perspectives. A perspective is the totality of
assumptions about relevant aspects of a specific subject domain from a common viewpoint.
Perspectives are not necessarily tied to individuals. People adopt different perspectives at
different times. Between two or more individuals, common perspectives are formed (/Pask
76/, see also /Braten 78/).

Perspectivity necessarily entails blindness. 1 cannot see what I cannot see from my
perspective. It is impossible to eliminate this blindness. An important prerequisite for the
emergence of deeper insights is self-reference (see below) and the interaction (crossing) of

perspectives.

Constitutive elements of cognition are distinctions and indications (/Spencer Brown 69/).
Complex cognitive processes consist of webs of interlocking distinctions, each relating to

different perspectives, and their recompositions into a coherent whole (/Pask 76/).

A key concept here is self-reference. While in logic it results in paradoxes, it is fundamental
to an understanding of living entities. Self-reference requires operational closure. All this
means, in basic terms, is that the results of an operation are themselves elements of its domain

of definition. This supplies the conditions required for the recursive application of operations.

In operationally closed and energetically open systems, the system's behaviour is determined
by the recursive coupling of operations, with several levels of consideration interacting.
System behaviour is stabilized by reference to eigen-values that give rise to system-specific
eigen-behaviour. This results in self-organization leading to the emergence of higher orders in
systems. This is the essence of the "Order from Chaos" principle formulated by v. Foerster
(/v. Foerster 60/ in /v. Foerster 84/).

Living systems are characterized by the fact that, during the course of their existence, they
continuously reproduce their own organization ("autopoiesis" is the term used in /Maturana,
Varela, Uribe 74/). Autopoiesis takes place in a medium. The autopoietic system and the

medium condition one another. I avoid giving here an assessment of how this concept can be

usefully applied also to social systems, as the current discussion about this point is strongly
controversial. For example, rather than regarding software projects as "autopoietic beings"
using systemic notions as Joseph Goguen does?, I will confine myself to considering closure

at the level of processes.

Self-reference also plays a major part in the emergence of insights. Perspective blindness can
be overcome by self-reference. Once I see that [am blind, I can see again. Self-reference is

also amenable to mathematical treatment (Varela 75/, /Varela 87/).

An essential and repeatedly emphasized aspect of constructivism is that ethics can never be
divorced from the consideration of cognition and action (cf. /v. Foerster 73, /v. Glasersfeld
87/, /Maturana, Varela 80/). This is ensured not by explicitly laying down norms about what
to do, but rather by viewing cognition and action as being sustained by us as individuals. This
leads to v. Foerster's ethical imperative: Act always so as to increase the number of choices.
In my opinion, this can be applied directly as a guideline for designing software development

projects as well as computer-supported systems.

According to /v. Foerster 73/, acknowledging others involves making a decision. It causes us
to emerge from our monologue and enter into a dialogue. Dialogue means adopting the other's
perspective. Closure, then, occurs through the other. I see myself through the eyes of the
other.

This step towards living in dialogue!? is of crucial importance in implementing constructivist
ideas in our dealings with others. It leads to the view "Reality = Community" (/v. Foerster
73/) selected as an epigraph for this contribution. According to /Braten 88/, our cognitive

faculties as a whole are geared to dialogue.

Well, that was, of necessity, a rather rudimentary and fragmentary crash course in
constructivism. [have attempted to convey something of the pleasure I experienced as I
gradually came to grasp what it is all about in my dialogue with Heinz von Foerster. I feel at
home with these ideas. They tie in with my own everyday experience both privately and
professionally, and they seem to me to open up far-reaching prospects for a desirable design

of our life in the community.

My subject proper begins with our recognition that the view of software development as
production is an invention. Thus, the prevailing view of the subject of the software

engineering discipline turns out to be constructed reality. It is useful for understanding certain

9 cf. Goguen Part 5 this volume
10 The term is used here in the sense of Buber (/Buber 84/).

aspects of software development, but of no use for others. It is therefore important to contrast

it with other views.
4. Software Development as Design

To begin with, I should clarify what I mean here by design. It will not do to simply adopt an
existing definition of design. What I shall endeavour to do instead is to construct a concept of
design to fit my fundamental concerns. In other words, I would like you to join me in drawing
a number of distinctions in order to arrive at a useful characterization of design in software

development.

By design, we mean a specific type of cognitive process that is geared to producing feasible
and desirable results within a particular domain!! . The domains in question may differ
widely. We normally only speak of design when there are concerns we wish to fulfil, limited

resources at our disposal, and different implementation options open to us.

Design in software development is of a specific nature and subject to special conditions.
Software is characterized by an interplay of several unusual features, relating to both the
nature of the product (cf. /Parnas 86/ and /Keil-Slawik in this volume/) and its embedding in
human contexts of meaning (cf. /Ehn 88/, /Reisin in this volume/). Software exhibits an
extreme degree of complexity, thus calling for equally complex construction processes. It
consists of a uniform, abstract building material, is therefore plastic and, in principle, of
unlimited revisability (cf. /Coy in this volume/, Budde, Ziillighoven in this volume/). It must
be machine-processable, i.e. complete down to the last detail, consistent and formally free
from error. It is not amenable to sensory perception and can therefore, in the last analysis,
only be evaluated once in use. It creates social contexts for human actions, which are shaped

by the technical properties of the product.

Design thus links different worlds: the social world of the application in question, the
technical world of the means of implementation, and the formal world of methods and

concepts.

In order to elucidate the meaning of design as we understand it here in all its essential
richness, we have to consider the way this concept is used in different contexts. As a rule, we
distinguish between design and implementation. We design something. The result is
subsequently implemented. Occasionally, we also call the result of a design process "the

design", focussing here on the external features of an object. That is too narrow a view,

1 In German, the two terms "Entwurf" and "Gestaltung" are used to approximate the

meaning.

though. We also speak of design in a broader context when we have in mind the overall

process of organizational and technical system development.

Design should be understood here in a processual sense: the results of design are incorporated
into the design processes from which they were obtained. Design relates not only to external
features, but also to the functionality of the program system under development and its
embedding in human contexts of action. Design also includes the provision of suitable tools

and methods for the specific software development situation and for project organization.

I should now like to illuminate design in software development from a number of different
angles. I apologize in advance for my rather abstract wording. This is due to the fact that I
begin by characterizing design in terms applicable to both individual and communal instances

of design. I do not make a distinction between the two until later on, in section 7.
5. The Design Space as an Unfolding of Interlaced Domains of Reality

The production view implies looking on software development as a sequence of phases,
ideally to be run through linearly. Each phase is concerned with a specific object: first of all,
analyzing the requirements of the application; then, on the basis of this, elaborating a
specification of the future system, defining what is to be done without prescribing how the

system will work; and, finally, deriving the program from this.
It is here that the domains of reality relevant to design implicitly enter into the picture:

. the world of the applications whose concerns are relevant to software development

and from which we derive requirements for the software,

. the world of the means of implementation — in our case technical information

systems including existing software,

. the world of methods and concepts which we use in the same way as maps to guide us

in linking concerns with means of implementation.

The phase model prescribes just one path through these worlds: that starting from fixed
requirements and following predefined methods to arrive at the implementation on a given
system. Ideally, this path should be followed only once with respect to the overall product
software.

The design view involves a process of rethinking here. Temporal progress should be

separated from the domains of reality. These are not processed in temporal succession, but are

present and linked at every point in time. Moreover, there are no preordained domains of

reality; these are constructed in the course of the design process. This means:

. We do not analyze requirements; we construct them from our own perspective (cf.
/Reisin in this volume/). This perspective is determined by our personal priorities and
values, by the methods we use as orientation aids, and by our interaction with others
constructing requirements from their perspective. Requirements are governed by
perspective. In most cases, they reflect differences in perspectives and are subject to

temporal change.

. We do not apply predefined methods, but construct them to suit the situation in hand.
There are no such things as methods per se — what we are invariably concerned with
here are processes of situative method development and application. We select
methods and adapt them. What we are ultimately doing in the course of design is

developing our own methods.

. We do not refer to fixed means of implementation that only take effect later on when
working out the details of implementation decisions. Instead, we construct the
meaningful use of means of implementation by testing, selecting or complementing

what is already available.

To postulate the existence of a predefined path through these worlds is misleading. It would
only be possible to follow such a path if all the relevant decisions had already been taken. But

then there is no place for design.
6. Design as a Web of Decisions

Design is rooted in concerns. These concerns induce us to set goals that are to be attained
with the help of specific means. By drawing this distinction between concerns and goals, I
wish to anticipate any discrepancy between what is ostensibly to be attained and what proves
to be desirable.!2 Design is normally initiated with a view to set goals, the point of departure
being an already established web of decisions linking the concerns considered relevant for

attaining the goals set with provisionally designated means of implementation.

Nevertheless, there is no fixed foundation for design, nor is it determined by predefined goals.

The concerns may change during the design process. The means of implementation may

12 According to the constructivist view, the notion of goals should be treated with
caution. In /Schmidt 87/, von Glasersfeldt is quoted that what ever can honestly be
set as a goal may be.derived from the need to sustain autopoietic organization /V.
Glasersfeld 82/. We mean something similar when we speak here of concerns.

prove inadequate. The predefined goals may turn out to be misleading or be considered no
longer valid. To this extent, design may be regarded as goal-free. Design creates its own

foundations and sets its own goals.

Design calls for an interplay of different faculties: besides a command of methods, what is
needed is an awareness of the potential of the means of implementation and a sensitivity to

the changing concerns of the application.

Design presupposes a range of options and scope for playfully exploring these options. In
other words: design can only take place where a sufficient range of options is available for

making the relevant distinctions. Design requires autonomy if a genuine choice is to be made.

Design consists of a web of design decisions which, taken together, make up a proposed
solution. Not all necessary design decisions are taken consciously. Frequently, it is not until
the proposed solution has been evaluated that it becomes clear which decisions will be needed
and which consequences failure to take them will imply. The importance of explicit design
decisions has been emphasized in particular by Parnas!3 . However, he only considers design
decisions as a basis for modular design. Design, of course, involves a wealth of other
decisions. They link concerns and means of implementation with a view to attaining the goals
considered valid within a specific context. This results in building up complex structures of
interwoven decisions. These must be intrinsically coherent and, overall, desirable. Their
emergence is specific to the individual design process; it is not determined by the given
problem. Instead, the problem itself is grasped in the course of the design process. Design is
determined by the perspective of those sustaining the design process and by the constraints

imposed upon them.

The viability of design is determined by a number of different factors, which frequently give
rise to opposing ones: whether the decisions match the concerns; whether the web of
decisions covers all elements of the problem that are considered essential, whether
meaningful use can be made of the means available; whether the goals set are attained. These

distinctions are made by an observer.

Design is thus based on a wealth of correlated distinctions concerning what is "good"
(desirable). There emerges here an interplay between proposed solutions and their evaluation.
What is "good" is determined in the course of the process by what those involved consider to

be "good". The criteria for such distinctions are derived from the concerns relevant to design.

13 cf. /Parnas 72/

Design can only fully unfold where decisions that have already been taken can be revised on
the basis of their evaluation; in other words, if the results of design again become themselves

the starting-point for design. This is how closure in design comes about.

Decision-making, evaluation and closure are interleaved and take place on different levels: in
individuals, on an informal level; when developing and checking a proposed solution; during

joint critical appraisal; when practically implementing a decision; during testing; during use.

Closure involves admitting our errors and learning from them (cf. /Knuth in this volume/),
offering and accepting constructive criticism, abandoning erroneous goals and recognizing

changing concerns. Closure means the continuation of design.

Design is successful as a whole if the web of design decisions is stabilized in the course of
revisions; in other words, if it withstands evaluation and is acknowledged as "good" by those

involved despite changing concerns.

Design is, then, always multiperspective, even where pursued by individuals. This is due to
the linkage of concerns, means of implementation and methods, to the different evaluation
criteria, and to the interplay between design, implementation and use that is an important

prerequisite for closure. Design requires multiperspective reflection.
7. Dialogical Orientation in Design

This section focusses on software development with others and for others — the form socially
effective software development normally takes. It is to be seen here as potentially dialogical.
The "I and Thou" of software development is concealed in basic relations such as "I develop
software with you" and "I develop software for you". Teamwork in software development can
be viewed as a network of this sort of basic relations. The specific network of relations

between the people involved, unfolding in time, is constitutive in design..

If we acknowledge this fact and attune ourselves to it, we come to a consciously dialogical
orientation. We can decide in favour of accepting the "you" and make provision for it. This
means accepting the other, not instrumentalizing him!4. The essential activity then takes place
between me and the other: we develop jointly. We look for ways of thinking that will enable
us to understand our common reality, and for forms of work that will help us to completely

unfold this reality.

14 According to /Buber 84/

In the light of the prevailing practice in software development, this may sound absurd. As we
know, software development is widely used as an instrument for exercising power and
control. Software projects are managed along bureaucratic lines and controlled by means of
tools. Teamwork is characterized by rivalry and lack of coordination. Failure to recognize
these facts would indeed be absurd. But we are not obliged to regard this an unalterable state

of affairs.

On the contrary, I consider far-reaching changes in the way software development is practised
to be imperative if we are to strive for quality and human-oriented system design. I consider
such a reorientation to be necessary not only for "humanitarian reasons" — as if the technical
work could be performed at least equally well without taking others into account. As I see it,
communal design has no chance of unfolding without this reorientation. This also seems to

me to be in agreement with Goguen's views on projects as "autopoietic beings"!>.

For this reason, we at the Technical University of Berlin have been working for a number of
years now to reorient software development towards a notion of system design that takes
account of human needs. These efforts have led to the development of the approach STEPS!®,
which has been elaborated in cooperation with other scientists and tried out in academic

project situations, in the context of method development, and in practice!”.

I now go on to describe in constructivist terms the ways of thinking and forms of work that

have shaped our experience .

"Dialogical orientation in design" is one way of characterizing cooperation both among
developers and with users. In our experience, there are such common features. But we must

also be able to differentiate between the two cases. We distinguish then between

. dialogical design among developers — by which I mean jointly working out a

proposed solution together with others!s, and

. jointly creating computer-supported contexts of action with users.!?

15 Goguen, 5.1 this volume

16 Software Technology for Evolutionary Participative System development, see
/Floyd, Reisin, Schmidt 89/

17 PEtS Project, see /Floyd et al. 89/ and /Reisin in this volume/

18 This is theoretically elaborated and empirically underpinned by Jiirgen Pasch in
/Pasch 88/, /Pasch 89/ and /Pasch 91/.

This is theoretically elaborated and empirically substantiated by Michaela Reisin
in /Reisin 89/ and /Reisin in this colume/. She, however, speaks not of "dialogical"
but of "cooperative" design.

19

Dialogical design involves working out a desirable tentative solution between myself and
others, taking design decisions on a joint basis, and bringing about closure with consideration
being given to the perspectives of all parties. This means that, instead of developing my
model in accordance with my evaluation criteria — objectifying and enforcing these where
possible —, 1 should endeavour to be receptive to the perspectives of others. Instead of
upholding my own model monopoly (/Braten 73/), to which others must conform, it is up to

me to take up all the other perspectives and allow them to interact.

There is little methodological support for this. Most of the methods I am familiar with are of a
monological nature (strictly speaking, they postulate a pseudo-objectivity, failing to
acknowledge the designer's perspectivity).20 In a dialogical design process, we must assume
that each contribution is of a provisional nature; that cooperating designers entertain different
expectations with regard to the process as a whole, setting different priorities and applying
different evaluation criteria. In dialogical design, we must also acknowledge existing conflicts

and jointly overcome them.

Dialogical design must succeed in weaving together these perspectives in such as way that the
web of decisions emerging during the design process is borne jointly. This involves
meaningfully alternating between individual and cooperative work, offering and accepting
constructive criticism, exploring the consequences of proposed design decisions, evaluating
results multiperspectively and revising them jointly — until gradually a stable solution

emerges that is endorsed by all parties.

The basic prerequisite for dialogical design is trust. This can only develop where the interests
of those involved are taken into consideration. Moreover, it presupposes a willingness on the
part of all parties, especially the project manager, to create and maintain a socially supportive

milieu.

Dialogical teamwork cannot proceed from any implicit assumptions; it must lay its own
foundations for cooperative work. This involves cooperation in establishing the project, in
assigning tasks and responsibilities, in synchronizing and coordinating work, and in laying
down conventions and standards for work within the team. But it also means jointly working
out an authoritative project view of the basic documents and of the concerns, priorities and

evaluation criteria valid in each case.

20 One exception here is SADT with its concept of viewpoints and the author-critic-

cycle (cf. /Ross in this volume/). However, SADT fails to provide means for
bringing the different perspectives into interaction with one another.

Dialogical design calls for the conscious development of a project language, linking the

relevant domains of reality in a way that everyone is able to follow.

Joint goals must be set and revised during the ongoing process as the respective situation

demands.

Cooperative work calls for commonly accessible and jointly maintained "external
memories"2! such as project files and diaries, recording the currently valid foundations of
work and jointly taken decisions, so as to enable the decision process to be reconstructed in

the case of revisions.

In contrast to the assumptions underlying the production view, dialogical design calls for rich
communication between all the parties involved. Information must be continuously collected
and disseminated, new viewpoints must be incorporated, and evaluations must be made from

ever new perspectives.

The distribution of work tasks must always take place with reference to a jointly upheld
overall view, and results obtained individually must be jointly validated. This process can be
given technical support in the form of prototyping, the emphasis here being on mutual

learning on the basis of preliminary implemented versions.

The measures outlined here are basically geared to facilitating the unfolding of a "Project

Mind" and the emergence of a shared perspective.
8. Concluding Remarks

Although I have only been able to outline software development as design in broad terms, I
should like to finish off by by showing what the results will be, should we be willing to
accept this view and make proper provision for it. It offers us a conscious orientation for our

theoretical and practical work.

Applied to training, it will mean equipping students with the knowledge and skills required

for design.

As regards the development of methods, it will involve elaborating flexibly adaptable
concepts and techniques supporting cooperative work with other developers and users. Also, a
cooperative, flexible and incremental work-style will be an important factor in tool

development.

21 Cf. /Keil-Slawik in this volume/.

Project organization will also promote cooperation in design. This means as much autonomy
as possible to enable us to incorporate the element of responsibility; it means the creation of a
dialogically oriented working milieu enabling shared perspectives to be formed; a division of
labour that allows us to arrive at and evaluate joint design decisions; and finally, the

conscious integration of revisions allowing closure in design.

Accepting and implementing this view means designing design. Undoubtedly, we still have a
very long way to go before arriving at the sort of societal conditions that will allow this to
take place on a large scale.22 That makes it all the more important — by way of a contribution
to desirable social changes — to outline practicable approaches to design, using as a guide
our common experience of quality and human-oriented design, and to explore these

approaches and prove their suitability.
Acknowledgement

This section is of considerable importance because the ideas set out in this chapter were
developed in dialogical processes. In other words, they were made possible and given
concrete form by cooperation, conversations and intellectual discussions with a number of

people, all of whose names I am unable to list here.

The technical experience on which this contribution is based was gained since 1978 at the
Technical University of Berlin in a research milieu organized along cooperative lines, and it
has been substantially supported by my co-workers. My special thanks are due to Reinhard
Keil-Slawik, Jiirgen Pasch and Michaela Reisin and all others who have contributed to our

methodological approach STEPS.

Important insights were derived from the research work I did during my stay in Palo Alto in
1987/88 and from the work involved in organizing and holding the conference on "Software
Development and Reality Construction". My special thanks go here to co-organizers Reinhard
Budde, Reinhard Keil-Slawik and Heinz Ziillighoven as well as to all the other organizers and

participants.

A considerable help to me in writing this contribution were the valuable discussions I had
with Michaela Reisin. I learned a great deal from the continual and conscious crossing of our

perspectives.

22 The masters of design are to be found in the Scandinavian countries. Their

theoretical and methodological approaches — along with strategies for societal
implementation of these approaches — can provide us with important insights for
our own work (see /Floyd, Mehl, Reisin, Schmidt, Wolf 87/).

For enabling me to make a tentative entry into the constructivist discourse, I am indebted to
three scientists for their intellectual guidance, encouragement and kind support. Stein Braten
showed me the door to this world of thought and was an invaluable help in finding my
bearings there. My attempts to understand Gordon Pask's theory, and his personal support in
these attempts, have helped me to acquire key insights. And last but not least, Heinz von
Foerster has been a great inspiration to me and instrumental in shaping the essence of the

ideas presented here.

Literature

Gregory Bateson: Mind and Nature - A Necessary Unity. Bantam Books Toronto New York
London Sydney 1979

Ernst von Glasersfeld: The Construction of Knowledge - Contributions to Conceptual

Semantics. Intersystems Publications. Seaside, California, 1987

Humberto Maturana, Francisco Varela: Autopoiesis and Cognition: The Realization of the
Living. D. Reidel Publishing Company, Dordrecht: Holland / Boston: USA / London:
England 1980.

Gordon Pask: Conversation Theory - Applications in Education and Epistemology. Elsevier
Scientific Publishing Company. Amsterdam Oxford New York 1976.

Heinz von Foerster: Observing Systems. Intersystems Publications Seaside California 1984

