

33

XP in Complex Project Settings: Some Extensions

Martin Lippert, Stefan Roock, Henning Wolf, Heinz Züllighoven
University of Hamburg

Computer Science Department, SE group
& APCON Workplace Solutions GmbH

Vogt-Kölln-Straße 30
22527 Hamburg, Germany

{lippert, roock, wolf, zuellighoven}@jwam.org

ABSTRACT
XP has one weakness when it comes to complex
application domains or difficult situations at the
customer’s organization: the customer role does not
reflect the different interests, skills and forces with
which we are confronted in development projects.
We propose splitting the customer role into a user
and a client role. The user role is concerned with
domain knowledge; the client role defines the
strategic or business goals of a development project
and controls its financial resources. It is the
developers’ task to integrate users and clients into a
project that builds a system according to the users’
requirements, while at the same time attain the goals
set by the client.
We present document types from the
Tools&Materials approach (cf. [6]) which help
developers to integrate users and clients into a
software project. All document types have been used
successfully in a number of industrial projects
together with the well-known XP practices.
Keywords
XP, Management, Participation, User, Client, Roles

1 CONTEXT AND MOTIVATION
It was reported that one of the major problems of the
C3 project was the mismatch between the goal
donor and the gold owner (cf. [3], [2]). While the
goal donor – the customer in the XP team – was
satisfied with the project’s results, the gold owner –
the management of the customer’s organization –
was not. It is our thesis that XP, in its current form,
fails to address the actual situation at the client’s
organization in a suitable way. The main
stakeholder, i.e. the users and their management, are
merged into a single role: the customer. This one
role cannot address the different forces in a
development project. The users of the future system
know their application domain in terms of tasks and
concepts, but they rarely have an idea of what can
be implemented using current technologies.

Moreover, it is often misleading to view the users of
the future system as the goal donor. They are
unfamiliar with the strategic and business goals
related to a project and, more important, they do not
control the money.
Therefore we make a distinction between the role of
the user and the role of the client. The users have all
the domain knowledge and therefore are the primary
source for the application requirements. The client
sets the goals of the development project from a
business point of view. The client will only pay for a
development project if these goals are met to a
certain degree.
We begin with a discussion of the roles in an XP project
as defined by Kent Beck. We then split up the customer
role into the user and the client role. These two roles
change the situation of XP projects. While the user can be
seen in a similar way to the XP customer, the client role
requires more attention. We address the new project
situation by using two document types geared to the
client role: base lines and projects stages. We show when
and how to use these document types and discuss their
relation to story cards and the Unified Process (UP).

2 ROLES IN XP
XP defines the following roles for a software
development process (see [1]):
• Programmer: The programmer writes source

code for the software system under
development. This role is at the technical heart
of every XP project because it is responsible for
the main outcome of the project: the application
system.

• Customer: The customer writes user stories
which tell the programmer what to program.
“The programmer knows how to program. The
customer knows what to program” (cf. [1], pp.
142f).

• Tester: The tester is responsible for helping
customers select and write functional tests. On
the other side, the tester runs all the tests again

Extreme Programming Conference 2001, Villasimius, Cagliari, Italy, 2001

34

and again in order to create an updated picture
of the project state.

• Tracker: The tracker keeps track of all the
numbers in a project. This role is familiar with
the estimation reliability of the team. Whoever
plays this role knows the facts and records of the
project and should be able to tell the team if
they will finish the next iteration as planned or
not.

• Coach: The coach is responsible for the
development process as a whole. The coach
notices when the team is getting “off track” and
puts it “back on track”. To do this, the coach
must have a very profound knowledge and
experience of XP.

• Consultant: Whenever the XP team needs
additional special knowledge they “hire” a
consultant in possession of this knowledge. The
consultant transfers this knowledge to the team
members, enabling the team to solve the
problem on their own.

• Big Boss: The big boss is the manager of the XP
project and provides the resources for it. The big
boss needs to have the general picture of the
project, be familiar with the current project state
and know if any interventions are needed to
ensure the project’s success.

While XP addresses management of the software
development aspects with the Big Boss role, it neglects
the equivalent of this role on the customer side. XP
merges all customer roles into the customer role. We
suggest splitting up the customer role into two roles: user
and client .

3 THE NEW USER AND CLIENT ROLES
The user is the domain expert which the XP team
has to support with the software system under
development. The user is therefore the first source
of information when it comes to functional
requirements.
The client role is not concerned with detailed
domain knowledge or functional requirements. The
client focuses on business needs, like reducing the
organizational overhead of a department by 100,000
USD a year. Given this strategic background, the
client defines the goals of the software development
project (“Reduce the organizational overhead of the
loan department by 100,000 USD per year”) and
supplies the money for the project. The client is thus
the so-called goal donor and the gold owner.
It is often not easy to reconcile the needs of users
and clients at the same time. What the users want
may not be compatible with the goals of the client.

What we need, then, are dedicated instruments to
deal with both roles.
4 STORY CARDS AND THE PLANNING GAME
We use story cards for the planning game, but we
use them in a different way than in the “original”
XP, and our planning game differs in some aspects,
too. In our projects, users or clients rarely write
story cards themselves. They do not normally have
the skills or the required “process knowledge” to do
so. Typically, we as developers write story cards
based on interviews with users and observations of
their actual work situation. These story cards are
reviewed by the users and the client. The users must
assess whether the implementation of the story cards
will support them. They thus review the developers’
understanding of the application domain. The client
decides which story cards to implement in the next
development iteration, and with which priority. To
avoid severe mismatches between the interests of
the users and client both parties are involved in the
planning game. This means that users can articulate
their interests and discuss with the client the
priorities of the story cards.
Our experience here is clear: users and client will
normally reach a compromise on their mutual
interests. But whatever the outcome of the planning
game is, the decision about what is to be
implemented next is made not by developers but by
the client.
If a project is complex, there will be an abundance of
story cards. In this case it is difficult for users, clients and
developers to get the overall picture from the story cards.
For this type of project, we use two additional document
types: project stages and base lines. These are described
in the next section.

5 PROJECT STAGES AND BASE LINES
In projects with complex domains or large
application systems, story cards may not be
sufficient as a discussion basis for the planning
game. In such cases, we need additional techniques
to get the overall picture – especially for the
contingencies between the story cards. If one story
cannot be developed in the estimated period of time,
it may be necessary to reschedule dependent stories.
We may also need to divide the bulk of story cards
in handy portions and make our planning more
transparent to the users and the client. We have
therefore enhanced the planning game by selected
document types of the Tools & Material approach
(cf. [7]): base lines and project stages.
We use project stages and base lines for project
management and scheduling. A project stage defines
which consistent and comprehensive components of the
system should be available at what time covering which

35

subgoal of the overall project. Project stages are an
important document type for communicating with users
and clients. We use them to make development progress
more transparent by discussing the development plan and
rescheduling it to meet users’ and client’s needs. Figure 2
shows an example of three project stages (taken from the
JWAM framework development project). We specify at
what time we wish to reach which goal and what we have
to do to attain this goal. Typically, the project stages are
scheduled backwards from the estimated project end to its
beginning, most important external events and deadlines
(vacations, training programs, exhibitions, project
reviews and marketing presentations) being fixed when
projects are established.

Subgoal Realization When
Prototype with web
frontend is running

Presentation of
prototype for users

31/3/00

Prototype supports
both web and gui
frontend.

Presentation of
extended prototype
for users and client

16/5/00

First running
system installed

Pilot web users use
web frontend.

30/8/00

...

Figure 2: Example project stages

Unlike the increments produced during an XP
iteration, the result of a project stage is not
necessarily an installed system. We always try to
develop a system that can be installed and used as
the result of every project stage, but we know that
this is not always be feasible. In large projects or

complex application domains, developers need time
to understand the application domain. During this
period, developers may implement prototypes but
rarely operative systems. We thus often have
prototypes as the result of early project stages.
Another example here is the stepwise replacement
of legacy systems. It is often appropriate to integrate
the new solution with the legacy system for reasons
of risk management. Project stages then produce
systems that can and will be used by users. But the
project team may also decide not to integrate the
new solution with the legacy system, perhaps
because of the considerable effort required for
legacy integration. In such cases, the project team
will also produce installable increments, but it is
clear that the increments will not be used in practise.
Users are often reluctant to use new systems until
they offer at least the functionality of the old system.
Base lines are used to plan one project stage in
detail. They do not focus on dates but rather define
what has to be done, who will do it and who will
control the outcome in what way. Unlike project
stages, base lines are scheduled from the beginning
to the end of the stage.
In the base-lines table (for example, in Figure 3), we
specify, who is responsible for what base line and what it
is good for. The last column contains a remark on how to
check the result of the base line. The base-lines table
helps us to identify dependencies between different steps
of the framework development (see “What-for” column).
The last three columns are the most important ones for us.
The first column is not that important because everybody
can, in principle, do everything (as with story cards).
However, it is important for us to know how to check the
results in order to get a good impression of the project’s
progress. The second and third columns contain
indicators for potential reschedulings between the base
lines and also helps us to sort the story cards that are on a
finer-grained level.

The rows of the base-line table are often similar to
story cards, but base lines also include tasks to be
done without story cards. Examples are: organize a
meeting, interview a user, etc.
The way project stages and base lines are actually
used depends on the type of development project in
hand. For small to medium-size projects, we often
use project stages, but no explicit base lines. In these
cases, we simply use the story cards of the current
project stage, complementing them by additional
task cards. If the project is more complex (more
developers, developers at different sites, etc.), we
use explicit base lines in addition to story cards. If
the project is long –term. we do not define base lines
for all project stages up front, but rather identify

Who does
what
with
whom/
what

What for How to check

Roock Prepara-
tion of
interview
guideline

Interviews Email interview
guideline to team

Wolf,
Lipper
t,

Interview
users at
pilot
customer

First
understandi
ng of
application
domain

Interview
protocols on the
project server

...
Roock Imple-

ment gui
prototype

Get
feedback on
the general
handling
from the
users

Prototype
acceptance tests
are OK; executable
prototype is on
project server

...

36

base lines for the current and the next project stage.
Since a project stage should not be longer than three
months, we work on a detailed planning horizon of
from three to six months.
It is often a good idea to sketch the entire system as
guideline for the project stages. We describe the concept
of core system and specialized systems in the next section
in order to provide an application-oriented view of the
system architecture.

6 SYSTEM ARCHITECTURE
In line with the project stages, we divide the
software system into a core system with extension
levels (cf. [5]). The core system is an operative part
of the overall software system which addresses
important domain-related needs. It is developed first
and put into operation. Since the core system is
usually still quite complex, it is subdivided into
extension levels which are built successively. An
example of a core system with extension levels is
shown in Error! Reference source not found.
(taken from the domain of hot rolling mills). The
upper extension levels use the functionality of the
lower extension levels. This way, we get an
application-oriented structure that is useful for
planning and scheduling. It is obvious that the
lowest extension level must be created first,
followed by the next-higher one, and so on.
Specialized systems are separated from the core
system. They add well-defined functionality. An
example of a core system with specialized systems
is shown in Error! Reference source not found.
(again taken from the domain of hot rolling mills).
The specialized systems are drawn as circles.
Since specialized systems only depend on the core
and not vice versa, we can deliver an operative and
useful core system very early on and get feedback
from the users. In parallel, different software teams
can build specialized systems. Adhering to the one-
way dependency of specialized systems, we achieve
a maximum of independence among the special
systems. They can be created in any order or even in
parallel. Obviously, the core system has to provide
the basic functionality for the whole system because
it is the only way for the specialized systems to
exchange information. The core system will usually

provide a set of basic communication
mechanisms allowing information
transfer between different parts of the
overall system.

Core System
Demonstrator

Protocol
System

Mill
Pacing

Plausibility
(Signals)

Model Adaptation
(Machine Learning)

Control
Station

Interface

Figure 5: Example core system with specialized systems

The concept of core system and specialized systems
can easily be used in the planning game. Users and
client get an impression of the whole system and can
negotiate on the different values and priorities
(users’ needs, client’s goals, technical constraints) in
order to reach a compromise on the project’s
development schedule.
In addition, project stages are used to control the project’s
progress and timelines relating to the overall plan.

7 CONCLUSION
We have discussed the roles in a XP project as
defined by Kent Beck. Based on our experience, we
split the XP customer role into two roles: user and
client. The user is the source of application
knowledge, while the client defines the project goals
and supplies the money for the project. Both parties
must be integrated into the development project. We
have shown how this can be done with the help of
modified story cards, projects stages, base lines and
an adapted planning game.

Display (passive) Report System

Model Computation

Model Control Measured Value Processing Material Tracking

Configuration Primary Data Handler Simulator

Logging

Set Point Server

Telegram HandlerExtension level 1

Extension level 2

Extension level 3

Extension level 4

Extension level 5

Figure 4: Example core system with extension levels

37

We do not suggest using all the presented new
instruments for every project. They should be used
as part of an inventory or toolbox, together with the
familiar techniques defined by XP. We then use the
instruments required for the project in hand. If the
project situation is not complex, we will not burden
the project with the additional roles and document
types. But if the application domain or the project is
highly complex, the sketched extensions to XP will
be worth while.
Selection of the proper instruments from the toolbox
may be difficult for the project team because we are
not yet able to provide detailed guidelines.
Evaluating project experience to provide such
guidelines for tool selection will be one of our future
tasks.
REFERENCES
1. Kent Beck: eXtreme Programming Explained –

Embrace Change. Addison-Wesley. 1999.

2. Martin Fowler: The XP2000 conference.
http://www.martinfowler.com/articles/xp2000.html.
2000.

3. Ron Jeffries: Extreme Programming -
An Open Approach to
Enterprise Development.
http://www.xprogramming.com/xpmag.2000.

4. The JWAM framework . http://www.jwam.org

5. A.Krabbel, S. Ratuski, I.Wetzel, Requirements
Analysis of Joint Tasks in Hospitals, Information
systems Research seminar In Scandinavia: IRIS 19;
proceedings, Lökeberg, Sweden, 10 – 13 August,
1996. Bo Dahlbom et al. (eds.). - Gothenburg:
Studies in Informatics, Report 8, 1996. S. 733–750,
1996

6. Lilienthal, C., Züllighoven, H., Application-Oriented
Usage Quality, The Tools and Materials Approach ,
Interactions Magazine, CACM, October 1997, 1997

7. Roock, S., Wolf, H., Züllighoven, H.,
Frameworking , In: Niels Jakob Buch, Jan
Damsgaard, Lars Bo Eriksen, Jakob H. Iversen, Peter
Axel Nielsen (Eds.): IRIS 21 "Information Systems
Research in Collaboration with Industry“,
Proceedings of the 21st Information Systems
Research Seminar in Scandinavia, 8-11 August 1998
at Saeby Soebad, Denmark, pp. 743-758, 1998

