

127

Diagnosing evolution in test-infected code

 Christian Wege Martin Lippert
 University of Tübingen & University of Hamburg &
 DaimlerChrysler AG Apcon Workplace Solutions Company
 HPC 0516 Vogt-Kölln-Straße 30
 70546 Stuttgart, Germany 22527 Hamburg, Germany
 +49 711 17 92952 +49 40 42883 2306
 wege@acm.org lippert@acm.org

ABSTRACT
In this study we trace the effects of applying the
techniques of refactoring and aggressive unit testing in
source code based on historical information. We show
how their impact on the evolution of the architecture can
be testified. The study comprises the analysis of a large
number of indiv idual integration versions of a large
framework. The method described here can help
development teams find weaknesses in their application
of the two traced techniques.

Keywords
Software evolution, architecture evolution, extreme
programming, refactoring, aggressive unit testing,
software metrics

7 INTRODUCTION
In a world of constantly changing requirements, systems
development must ensure that it is able to quickly
respond to changed user requirements or technology
updates. One major promise of Extreme
Programming(XP) [2] is to enable the construction of an
evolvable system. Instead of planning all possible future
enhancements from the very beginning an extreme
programmer relies on its ability to incorporate changes to
the system and its architecture at an arbitrary point in the
future.

In this study we investigated the artifacts (namely the
source code and other historical information) of a project
which uses the aggressive unit testing and refactoring
techniques extensively for the development. We trace the
effects of the application of these two techniques in the
developed source code. Our system under investigation is
JWAM1 – a framework for constructing large scale
interactive software systems.

In their well-known article Beck and Gamma introduce
the testing style of test infection [1]. For every class in the
system you write a unit test. New requirements are
implemented in the system by refactoring the unit tests
first and then the system classes [4]. So when those two
techniques are applied strictly we talk about test infected
code. Given this definition JWAM is test-infected. Its test

1 http://www.jwam.org

suite created with the Java testing framework provided by
Beck and Gamma2.

The JWAM development relies on an integration server
[7] which ensures that for every update of the source code
all tests still run. The study is based on 254 individual
integration versions of the framework which stem from
this continuous integration process. In addition to the
source code we used the integration log which contains a
small description for every update of the source tree.

Lippert et al. state that “With Pair Programming we have
improved framework quality, with test cases we maintain
it. Without the test cases a lot of the refactoring we did in
the past would have been less smooth.”[8] With the help
of our analysis we validated this rather intuitive statement
by observing the history of specific system properties in
the produced artifacts. As well with the help of our
analysis we can point out some areas of potential
improvements of the framework development.

This study concentrates on tracing the effects of agressive
unit testing and refactoring directly in the code and in
historical information. It doesn’t investigate the
correlation to requirements changes of defect rates, which
would be of high interest as well.

8 THE CASE STUDY
The method
The method used in our study is an adaptation of the
approach proposed by Mattsson and Bosch [9] for
observing software evolution in object-oriented
frameworks. Based on historical information about the
subsystems, modules and classes they investigated the
size, change rate and growth rate of the system. The work
of Mattsson and Bosch is based on a method proposed in
[5] which focus was on observing the macro-level
software evolution using the version numbering of a
system. Mattsson and Bosch adapted this approach for
investigating object-oriented frameworks. The system
was divided into a number of subsystems which were
themselves divided in several modules. In the adapted
approach each module consisted of several classes
(instead of programs as in the original approach).

2 http://www.junit.org

128

Size is calculated by the number of classes in each
module or subsystem. The calculations of change and
growth rate are made in terms of changed classes as units.
Class change is measured in terms of the change in the
number of public methods for each class. The focus on
public methods stems from the fact that a change in the
public methods reflects a better understanding of the
boundary of the system. Changes of private methods
however ma inly reflect refinements of implementation
details and are thus of minor interest.

The method steps in the original approach are3:

1. calculate, for all releases, the change and growth rate
for the whole system,

2. calculate, for all releases, the change and growth rate
for each of the subsystems,

3. for those subsystems that exhibit high growth and
change rates calculate, for all releases, the change and
growth rates for the modules,

4. those modules that exhibit high change and growth
rates are identified as likely candidates for restructuring
[9].

For our study we based our calculations for system,
subsystems and modules on the package/subpackage
structure of Java . The packaging feature of Java is a
natural structuring mechanism provided by the language.
In JWAM this mechanism is used to distinguish between
the core and several non-core part of the whole system
and inside the core to distinguish between the framework
layers. We will discuss this in more detail later. Java
interfaces are treated exactly the same way as Java
classes.

The second important adaptation is that we changed the
top-down approach to a bottom-up approach . Instead of
starting with the top level system, we calculate the values
for every class and subsystem and go up to the top. We
try to trace the development method in the code, therefor
we are interested in all developed artifacts. For being able
to give advice on possible restructuring candidates (like
in the approach by Mattsson and Bosch) we have to
widen the empirical base first.

The third and most important adaptation is the
introduction of the test coverage rate . If aggressive unit
testing is one central part of test-infected programming
then the results should be dependent on the number of
system classes covered by unit tests.

The investigated system
JWAM is a Java framework supporting the development
of large scale interactive software systems according to
the tools & materials approach [11]. The foundation of
the JWAM framework was laid in 1997 by research
assistants and students of the Software Engineering
Group at the University of Hamburg [8]. In 1998 the
commercialization of the framework began. In 1999 the

3 see section 3 for our modifications

team started to use XP techniques. Our study covers 254
individual integration versions of the whole system from
April 2000 to December 2000 with roughly one version
per day.

The top-level package structure of JWAM 1.5.0
differentiates between the framework core and several
collections of other components:

• de.jwam: The framework core contains the
interfaces and classes which are necessary to create a
simple application according to the tools and
materials approach.

• de.jwamx: JWAM components which provide
technical or domain oriented services.

• de.jwamy: Third party components which provide
technical or domain oriented services.

• de.jwamdev: Tools used for the work with the
framework.

• de.jwamalpha: New JWAM components and
new JWAM tools4.

The framework core in de.jwam is divided into several
layers to separate different concerns. This is the most
fundamental part for building new applications on top of
JWAM and is the ground work for the architecture of
applications based on JWAM.

9 DIAGNOSING EVOLUTION AND TEST
INFECTION

Based on the structural observations derived from the 254
integration version we are able make statements about the
system’s evolution and about the influence of the used
techniques during development on this evolution. We
have extracted information about the following subset of
system properties, which is an adaptation of the descriptions
found in [9]:

• The size of each package and subpackage is the number
of classes it contains. Only top-level classes (no inner or
nested classes) are used because they reflect the
behavior of the system for the outside world.

• The change rate is the percentage of classes in a
particular package that changed from one version to
the next. To compute the change rate two versions of a
class are needed. The relative number of the changed
classes represents the change rate.

• The growth rate is defined as the percentage of classes
in a particular package, which have been added (or
deleted) from one version to the next. To compute the
growth rate, two versions are compared and the
numbers of the added and deleted classes are
computed. The relative number of the new classes (i.e.
the difference between added and removed classes)
represent the growth rate.

• The test coverage rate is the percentage of classes that
are covered by test classes. Given the convention to

4 Adapted from program documentation of JWAM 1.5.0

129

name a test class with the appendix ‘‘Test’’ we can
count the number of test classes for a given package.
The test coverage rate is the number of test classes
divided by the number of system classes in the package
subtree (i.e. the number of classes without the test
classes).

Overall

0

200

400

600

800

1000

1200

1400

1600

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

S
iz

e

One important detail for calculating the system properties
is the way we deal with package restructurings. Given a
class in version n of the system we first look for that class
in version n-1 with exactly the same package qualifier. If
this class is not found we look for the class in version n-1
without the package qualifier. Due to the nature of the
development method of making small iterations and
increments we are likely to find those classes that are
only moved to another package but not renamed. Now we
can identify the predecessor of a given package in version
n-1 by looking for the packages from which the classes in
package of version n originate.

System observations
Diagram 1 shows the historical development of the size
of JWAM for the 254 observed integration versions.
Around version 19 you see an irregularity of shrinking
framework size. Here a library which once has been part
of the framework was deleted completely. At integration
version 33 another outdated library was deleted. The
other exceptionally high change in the system size is at
integration version 219 where a large number of old test
cases and old examples are integrated at once. Except for
those singularities a more or less linear growth of the
framework’s size can be testified over the observed
period.

Overall

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

C
h

an
g

e
an

d
 g

ro
w

th
 r

at
e

Change rate
Growth rate

Mattsson and Bosch see a linearly growing size as a sign
for the maturity of a framework. The change rate and
growth rate of such a system should more or less linearly
fall. They explain non-linear behavior of the change rate
of the overall system with a major architectural change
(i.e. the introduction of online capabilities into a batch-
oriented system). In case of JWAM the non-linear change
rate and growth rate curves stem from the fact that we

observed every integration version of the system – not
only the released versions. Thus in the context of
investigating test-infected code we are more interested in
the frequency of the change and growth rate peeks rather
than in their absolute height.

Overall

0

0.1

0.2

0.3

0.4

0.5

0.6

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

T
es

t
co

ve
ra

g
e

ra
te

Diagram 2 shows the change and growth rate history for
the whole system. Compared to the size history this
diagram shows more the individual development steps
(the dynamics of the development process). A change rate
average of 0.0055 testifies the iterative development in
small steps. A growth rate average of 0.0026 testifies the
incremental7 development in small steps. A general
observation is that a change occurs more often than a
growth of the system. This indicates that after or before
the addition or deletion of new methods or new classes
some refactoring steps are performed. This matches
perfectly the test-infected development style.
In this study we introduced the system property test
coverage rate. This can be seen in diagram 3 for the
overall system. Except from the singularities explained in
the discussion of the size history for the overall system
the test coverage rate history exhibits a more or less
constant growth. For example starting with a test
coverage rate of less than 0.28 it reaches more that 0.5 at
the end of the observed period. This is an indication for
the growing matureness of the application of the
techniques for the framework development.

A test coverage rate of about 0.5 doesn’t seem to be very
sophisticated for a development process which states to
be a form of XP as XP requires a very high test coverage
rate to be successful. As can be seen in diagram 4 we

5 A change rate of 0.005 means that 5 classes are changed
given a average overall size of the system of 1000
classes.
6 A growth rate of 0.002 means that 2 out of 1000
methods are added or deleted.
7 Cockburn distinguishes between incremental and
iterative development. “Incremental development is a
staging strategy in which portions of the system are
developed at different times or rates, and integrated as
they are ready. [...] Iterative development is a rework
scheduling strategy in which time is set aside to revise
and improve parts of a system.” [3]
8 A test coverage rate of 0.2 means that only 2 out of 10
system classes are covered by a test class.

130

have to differentiate between the different top-level
packages in order to make a more qualified diagnosis.
This diagram shows the test coverage rate for the
individual top-level packages.

Top level packages

0

0.2

0.4

0.6

0.8

1

1.2

1 19 37 55 73 91 10
9

12
7

14
5

16
3

18
1

19
9

21
7

23
5

25
3

T
es

t c
o

ve
ra

g
e

ra
te

de.jwam
de.jwamalpha
de.jwamdev
de.jwamexample
de.jwamx
de.jwamy

The framework core in de.jwam exhibits a more or less
healthy growth of the test coverage rate from below 0.7 to
1. This fits to the close to ideal size history for the
framework core in diagram 5. For the
de.jwamexample package the development team
seems to have realized the importance of test cases for the
examples during the framework development.

Top level packages

0
50

100
150
200
250
300
350
400
450

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

S
iz

e

de.jwam
de.jwamalpha
de.jwamdev
de.jwamexample
de.jwamx
de.jwamy

Starting from a test coverage rate of 0 it ends at 0.4. At
the same time the package de.jwamexample is the
only other top-level package which exposes a close to
linear growing size in diagram 5. The development team
seems to have understood the value of a suite of examples
and the importance to ensure their high quality. An
application developer could base its own development on
the provided examples together with the associated test
cases.

The developers seem to have realized the importance of a
test suite for the de.jwamx package (containing
additional components on top of the framewo rk core)
which exhibits a growing number of test cases. But the
number of test cases still didn’t reach a level which could
ensure a healthy behavior of the size history curve for this
package as can be seen in diagram 4. The packages
de.jwamalpha and de.jwamdev have by far the
worst test coverage rate history. The developers
obviously don’t see the need to put the same amount of
effort in the evolvability of their development tools as
they did for the rest of the framework. The package
de.jwamalpha is planned to be a test area for new
ideas. In XP terms these new ideas are spike solutions
which do not have to be developed with the same care as
the rest of the system. A development of a proper test

suite for the new ideas is deferred to the point in time
when those ideas are incorporated into the base system.
This is completely valid for XP and does not exhibit a
fallacy in the development process. Diagram 5 confirms
this behavior for the size history of the two packages.

The differences between the top-level packages can also
be traced in the change rate history in diagram 6. For the
framework core the development seems to be very close
to the ideal: many small peeks with a high frequency
indicate many iterative steps. Whereas in the case of the
other top-level packages the change rate peeks are less
regular. Here the development is performed in fewer and
bigger steps.

Top level packages

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

1

19 37 55 73 91 10
9

12
7

14
5

16
3

18
1

19
9

21
7

23
5

25
3

C
h

an
g

e
ra

te

de.jwam
de.jwamalpha
de.jwamdev
de.jwamexample
de.jwamx
de.jwamy

Diagnosis and Recommendations
Generally the development team seems to be on the right
track for applying the two techniques. The analysis of the
code shows the positive effects of building and
maintaining a good test suite on the evolution of the
system. The iterative and incremental development steps
are most clearly seen in the parts of the system which are
the most mature ones. The effort distribution of the
development resources seems to be effective in the sense
that a complete test suite is only maintained for those
parts that have to be of high quality (i.e. the framework
core). The framework parts which are in an experimental
state (i.e. the alpha package) have a poor test coverage
rate, a non-linear size history and a few big change and
growth rate peeks (as opposed to many, equally
distributed small peeks in the case of the framework
core).

It is a good idea to provide framework users with a set of
examples which come with a whole suite of tests specific
to those examples. This shows the users how to write
tests for typical uses of the framework and helps improve
the overall quality.

However the analysis also exhibits some possible
weaknesses of the system development. The size history
of the overall system shows some non-linearity. This
seems to indicate large steps and big changes in the
development. That would conclude that these steps did
not happened in an XP like style. But the current used
system demonstrates that the used method in this article
has also its weaknesses. The mentioned changes
influenced a lot of classes but they were no “big” changes

131

in the sense of XP. The changes were done in a few
minutes, maybe one hour, and did not influence many
other parts of the system. So we would say they were not
big or complicated changes. This “quality of the change”
is not measured by the used measurement method.

10 RELATED AND FUTURE WORK
Clearly the work of Mattsson and Bosch is the basis for
our approach of identifying the software evolution
through examination of historical information. We
extended their approach in some ways to fit the specific
needs of our research question. Mattsson and Bosch
extended the original approach of Gall et al. in the sense
of smaller granularity of the examined entities [5]. Our
method extends the approach of Mattsson and Bosch in
the sense that we examine the software evolution over
smaller periods of time to better fit the incremental and
iterative development in small steps.

An empirical study by Lindvall and Sandahl show that
software developers are not so good at predicting from
the requirements specification how many and which
classes will be changed [6]. In the context of XP the idea
of a requirements document is omitted completely in
favor of user stories which contain only the next most
important requirement for the evolution of the system [2].

Simon and Steinbrückner have analyzed JWAM 1.5 with
their high quality metrics tool. They are working on an
analysis of a more recent version of JWAM to see how
their first recommendations on the quality of the
framework found their way in the version [10].

The analysis concentrated on public methods given by the
method we base our work on. Experience however shows
that refactoring is applied to private methods in many
cases. On the other hand our analysis didn’t take into
account the correlation to requirements changes and
defect rates, which could reveal other insights in the
development process.

11 CONCLUSIONS
In this study we presented an approach for tracing the
effects of the techniques refactoring and aggressive unit
testing in the code. We examined 254 integration versions
of a large Java framework. The integration versions stem
from a continuous integration process which enables an
XP-like development of the framework.

We showed the usefulness of our approach and discussed
how the effects of “test-infected development” can be
seen in the history of specific system properties. As well
we were able to highlight some areas of potential
improvements in the development process.

REFERENCES
1. Kent Beck and Erich Gamma, Test-infected:

Programmers love writing tests. Java Report, Vol 3,
No. 7, 1998.

2. Kent Beck: Extreme Programming Explained .
Addison-Wesley, 2000.

3. Alistair Cockburn: Surviving Object-Oriented
Projects: A Manager's Guide. Addison-Wesley,
1998.

4. Martin Fowler: Refactoring: Improving The Design
Of Existing Code. Addison-Wesley, 1999.

5. H. Gall, M. Jazayeri, R.G. Klösch, G. Trausmuth,
Software Evolution Observations Based on Product
Release History, Proceedings of the Conference on
Software Maintenance - 1997, 1997.

6. M. Lindvall, K. Sandahl: How Well do Experienced
SoftwareDevelopers Predict Software Change? Journal
of Systems and Software, 43(1), 1998.

7. M. Lippert, S. Roock, R. Tunkel, H. Wolf:
Stabilizing the XP Process Using Specialized Tools.
To appear in Proceedings of XP 2001 conference,
Cagliari, Sardinia, Italy, 2001.

8. M. Lippert, S. Roock, H. Wolf, H. Züllighoven:
JWAM and XP - Using XP for framework
development. Proceedings of the XP2000
conference. Cagliari, Sardinia, Italy, 2000.

9. Michael Mattsson and Jan Bosch: Observations on
the Evolution of an Industrial OO Framework. In
Proceedings of the ICSM’99, International
Conference on Software Maintenance, Oxford, UK,
1999.

10. Simon, Steinbrückner: Analysis of JWAM 1.5 with
the metrics tool Crocodile. Online at
http://www.jwam.de/
home/quality_assessment_jwam15.pdf.

11. Heinz Züllighoven: Das objektorientierte
Konstruktionshandbuch. dpunkt.verlag, 1998.

