
Diplomarbeit

Design and Implementation
of an Ontology

for Knowledge Assessment

Stefan Ukena
stefan.ukena@gmx.de, Matrikelnr. 5021131

April 4, 2005

University of Hamburg,
Department of Informatics,
Software Engineering Group

Prof. Dr. Christiane Floyd Dr. Carola Eschenbach
(primary supervisor) (secondary supervisor)

Acknowledgments

I would like to thank Prof. Dr. Christiane Floyd, Dr. Carola Eschenbach and Dr.
Rüdiger Klein for their advice, time and their support. I would also like to thank
Martin Dotter for the time he spent explaining aircrafts and aircraft design to me.
Finally, I would like to thank Prof. Dr. Kristel Kumbruck for establishing the contact
to the KMOD team which made it possible for me to participate in the project.

Table of Contents
0 Introduction 5

0.1 The subject of this thesis... 5
0.2 The structure of this thesis.. 6

1 Part 1: Ontology and ontologies 9
1.1 The origin of the term ontology.. 9

1.1.1 Ontology as a philosophical discipline... 9
1.1.2 Ontologies as conceptual artifacts... 10
1.1.3 From Ontology to ontologies in informatics..................................... 11

1.2 Ontologies and conceptualization... 13
1.3 Formal vs. situated ontologies.. 14
1.4 Situated ontologies in communities of practice....................................... 16
1.5 Computer-implemented ontologies... 18
1.6 The notion of ontologies in this thesis.. 21

2 Part 2: The KMOD project 23
2.1 Project overview... 23
2.2 Related work.. 23
2.3 Tools for the KMOD project.. 25

2.3.1 Overview of the Tools.. 25
2.3.2 The Protégé-2000 meta-model... 29

2.4 Designing the KMOD ontology.. 32
2.4.1 The interviews.. 32
2.4.2 Creating the KMOD ontology... 33

3 Part 3: The KMOD Ontology 39
3.1 Rationale of the KMOD ontology... 39
3.2 A look at the conceptual view of KMOD... 40

3.2.1 Knowledge assessment... 41
3.2.2 People and experience.. 42
3.2.3 Knowledge management concerns... 43
3.2.4 Six kinds of knowledge areas.. 45
3.2.5 Overview of the conceptual view of KMOD....................................... 47

3.3 The main classes of the KMOD ontology... 48
3.3.1 Complete list of top-level classes... 50
3.3.2 Direct subclasses of Knowledge Area... 53
3.3.3 KM Function, KM Concern, and KM Initiative.................................... 56

3.4 Representing knowledge with the KMOD ontology—selected examples... 58
3.4.1 Syntax of the representations used... 58
3.4.2 Representing relations.. 60
3.4.3 Representing knowledge assessment criteria................................... 64

4 Part 4: Evaluation 67
4.1 Evaluation of the KMOD ontology.. 67
4.2 Evaluation of our approach... 70
4.3 Evaluation of the tools.. 72

5 Summary and outlook 74
6 Bibliography 76
7 Appendix A – List of inverse slots 81

4

Introduction

0 Introduction

0.1 The subject of this thesis1

This thesis is based on my work for the research and development project of Airbus
Bremen, Germany, and DaimlerChrysler Research & Development, Berlin, Germany.
I focus on two aspects of that project: the ontology we created and the way we
proceeded to create it. This includes an introduction to the concept of ontology in
informatics2, a description of the specific ontology and the process of its creation, as
well as an evaluation of the project's results. I will suggest that the process of
ontology creation can be improved by learning from application-oriented software
development.

Prof. Dr. Christiane Floyd and Dr. Carola Eschenbach were my primary and
secondary advisers at the University of Hamburg, respectively. Dr. Rüdiger Klein
was my supervisor at DaimlcerChrysler Research & Development Berlin.

The KMOD project

The KMOD project serves as the case study of this thesis. The acronym KMOD
stands for Knowledge Management Overall Diagnosis. KMOD was a research project of
EADS Airbus in cooperation with DaimlerChrysler Research & Development.
KMOD's goal was the creation of an ontology-based information system for
knowledge assessment the so-called KMOD system. The underlying ontology was to
be used to evaluate the knowledge of Airbus' departments.

The project started within a single section of Airbus but is expected to be
successively propagated through all other sections. The department to participate in
the KMOD project was EGA3. It has members in all four Airbus national companies4,
and is closely involved in the process of developing new aircrafts, a central activity
of any aircraft building company. Activities include designing airplanes and testing
the design. The project lead was in the hands of Martin Dotter from Airbus, an
expert in IT-based knowledge management related topics within the Airbus
company.

DaimlerChrysler Research & Development was a contractor in the KMOD project
with Dr. Rüdiger Klein as a member of the KMOD project team. Dr. Rüdiger Klein is
also the company's supervisor of this thesis. He is an expert in the field of IT-based
knowledge management for engineering as well as the knowledge-management-
related technologies that were used in the project.

1 The official German term for this kind of thesis is Diplomarbeit.

2 I will use the term informatics rather then computer science, science of computing, etc. because
it most closely resembles the German term Informatik.

3 The name EGA is not an acronym and does not have any meaning.

4 Airbus has plants in the following four countries: UK, France, Spain, and Germany.

5

Introduction

My role in the project

I joined the project team as a student for DaimlerChrysler Research & Development
during the second half of 2004. When I joined the project it had already been running
for some time. My job was to create an ontology in cooperation with my company
supervisor, based on work that had previously been done in the project. The creation
includes the identification of relevant concepts and relations from interview
documents, the design of an ontology, and its implementation with Protégé-2000
and Flora-2. This ontology was called the KMOD ontology.

The KMOD ontology

The KMOD ontology, together with an F-Logic-based query-engine, is the central
part of the KMOD system. The KMOD system is a tool for middle and upper
management. It is expected to answer a question like “Which critical knowledge areas
are effected by the retirement of experts within the next five years?”.5

An important design criterion for the KMOD ontology was the separation of the
knowledge about the domain from the knowledge about knowledge assessment.
Therefore the KMOD ontology can be viewed as consisting of two parts:

• a domain-independent part (called the knowledge assessment ontology)

• a second part for a specific domain

The idea was to create a completely domain-independent, reusable ontology for
knowledge-assessment. This knowledge assessment ontology should be modeled in
such a way that it can easily be reused with supposedly any domain by creating or
reusing an existing domain ontology. The twofold design is meant to ensure that the
KMOD ontology can be used in other sections of Airbus by adjusting or replacing
the ontology for one domain by an ontology for another domain.

0.2 The structure of this thesis

This thesis is divided into four main chapters. Chapter 1: Ontology and Ontologies is
an introduction to the concept of ontology in both philosophy and informatics. The
term ontology and related concepts are explained as far as this is necessary for the
understanding of the rest of this thesis. Emphasis is put on introducing ontologies as
artifacts (in the context of informatics).

Chapter 2: The KMOD project details the project, the process of creating the KMOD
ontology, and the tools which were used.

The project result is described in the chapter 3: The KMOD ontology. This chapter
includes an informal description of the KMOD ontology as well as a detailed list of
the most important classes.

5 A second objective was to create a guide for new employees. It was supposed to be a
starting point to get an overview of EGA's structure, its processes, and the knowledge
involved. This objective was abandoned during the course of the project.

6

Introduction

Chapter 4: Evaluation is an evaluation of the KMOD ontology, the tools, and the
process that was used to create the ontology. The chapter concludes with a number
of suggested improvements.

The final chapter, chapter 5: Summary and outlook, gives a short summary of the
results of the thesis, its conclusion, and an outlook on possible future work.

7

Part 1

Ontology and ontologies

Part 1 introduces the three meanings of the
term ontology: a philosophical discipline, an
artifact in philosophy and an artifact in
informatics.

After a brief introduction to the term's
(philosophical) history the chapter
concentrates on ontology artifacts in
informatics, including the notion of formal and
situated ontologies which is used throughout
this thesis.

Part 1: Ontology and ontologies

1 Part 1: Ontology and ontologies
The creation of the KMOD ontology was the central aspect of the KMOD project.
Generally, in informatics ontologies are used for the formal specification of
semantics, expecting to enable computers to process documents in a way that is
more meaningful to the user than it is today. The introduction of ontologies is
expected to move an application’s “understanding” of documents from the syntax-
to the semantics-level. Semantics is here understood solely in the sense of formal
semantics, or interpretation, of a logical theory: formal semantics relates the
syntactically defined symbols of the theory to the theory's model.

The first part of this chapter takes a look at the philosophical origin of the term
ontology as far as this is necessary to understand its recent use in informatics. The
second part of the chapter investigates how the term is used in informatics. I will
contrast the notion of formal ontologies that is used in the context of communication of
software agents, with the notion of situated ontologies which is applicable in the
context of knowledge sharing between humans. I also suggest a preliminary
definition of the notion of a situated ontology which is used throughout this thesis.
The chapter ends with a look at two aspects of ontologies in informatics that are
relevant for the description and evaluation of the KMOD project, respectively:
different types of ontologies and ontologies as boundary objects.

1.1 The origin of the term ontology

1.1.1 Ontology as a philosophical discipline

The word ontology stems from the Greek words ον (pronounced on), which means
“being”, and ιόγος (logos, both o's pronounced short, like in log and boss), which means
“study” or “discipline”. In philosophy, Ontology6 designates the study of being as
such.7 If Ontology is the study of being as such, then the subject of Ontology is being
itself. But what does that mean?

A good way to grasp the concept of Ontology is by taking a look at its history.

According to a dictionary of philosophical terms ([Prechtl and Burkard 1996]) the
first appearance of the word Ontology can be traced back to the 16th century German
scholar Rudolf Goclenius, also known as Rudolf Gockel. He was the first to

6 Ontology with a capital “O” will designate the philosophical discipline. This spelling is
used to distinguish the different meanings of the word ontology, and was introduced by
Guarino (1998).

7 Instead of study of being as such it is also sometimes called study of being in general, study of
being in the abstract or study of the nature of being.

9

Part 1: Ontology and ontologies

distinguish Ontology as a discipline of its own. What Goclenius called Ontology had
before been regarded as only an aspect of another discipline: metaphysics.8

The philosophical discipline of metaphysics goes back to Aristotle, though he did
not use that name. He spelled out his program of metaphysics in a series of fourteen
books. The series as a whole had no title at the time but later came to be known as ta
meta physika or simply Metaphysics. [Prechtl and Burkard 1996]

In these fourteen books Aristotle describes a discipline that in his mind was to be
considered the first and highest among all philosophical disciplines. That is why he
referred to it by the name of “first philosophy”. [Prechtl and Burkard 1996]

This first philosophy is concerned with what all the other specialized sciences do
simply take for granted. It is concerned a) with the preconditions of being and b)
with being itself. While Aristotle himself perceived his first philosophy as a whole it
was later divided into two separate disciplines: a) theology, which is concerned with
the preconditions of being and b) Ontology which is concerned with being itself.
[Prechtl and Burkard 1996]

The qualifier “as such” indicates what sets Ontology apart from all other disciplines:
whereas scientists like physicists are concerned with things that exist, an Ontologist
is concerned with existence itself, i. e. being itself. A physicist is concerned with how
two objects interact, which forces act upon them etc. The physicist does not question
the nature of the existence of objects or forces she observes. This is what the
Ontologist does. She might ask herself how the existence of the objects differs from
the existence of the forces that act upon them. Do the forces exist in a way that is
independent of the objects? Or are the forces merely a property of the two objects?

If the former is true, then forces would be regarded as first-class objects: they exist on
their own, their existence does not depend on other objects. If the latter is true, the
force would only exist as properties of the two objects. This would give rise to even
more questions: Is the force a property of one of the objects? Or maybe a property of
both of them?

These questions are all concerned with the ontological status of something, in this case
the ontological status of the forces that act upon two objects.9

1.1.2 Ontologies as conceptual artifacts

The term ontology is not only used to refer to the philosophical discipline of
Ontology but also to refer to the artifact that is the subject of Ontology:

8 It should be noted that the meaning of the term metaphysics has undergone many changes.
The meaning described here is that of Aristotle's first philosophy.

9 It should be noted that the observer plays no role in any of these ontological questions.
Ontology is not at all concerned with how we come to know whether the objects, forces
etc. exist or not. These kind of questions (“Do we know if the two objects exist?”) are the
subject of epistemology.

10

Part 1: Ontology and ontologies

ONTOLOGY Either the part of metaphysics concerned with the nature of
existence, or [...] the entities (things, processes, properties) postulated by a
particular scientific theory or conceptual scheme.

[Curd & Cover, p. 1303]

Different Ontologists have different theories with regard to ontological questions.
They have different theories about the nature of being, or, to put it yet another way,
they advocate different ontologies. An ontology in this sense is a systematic account of
existence.

In this context an ontology is an artifact: a theory of existence. Because different
philosophers will have different theories it makes sense to speak of ontologies, in
plural, as well.

Thus, two different meanings of “ontology” can be distinguished:

• O ntology: The name of a philosophical discipline.

• ontology, ontologies: A theory (or theories) about the nature of being; a
systematic account of existence. The goal of Ontology.

Speaking of the existence of ontologies in the plural can be misleading with regard
to what the original goal of Ontology was. Ontology does not look for several
accounts of existence which may be true, but it looks instead for the one true
ontology that is the only complete account of existence. Therefore the different
ontologies must be regarded as competing ontologies for this status: the status of
being the one true ontology.

1.1.3 From Ontology to ontologies in informatics

Today, the main areas of informatics which are concerned with ontologies are
artificial intelligence and knowledge representation on the one hand, and
information system design and system development on the other.

The interest in philosophical Ontology started in the field of artificial intelligence
and knowledge representation, namely among knowledge engineers [Guarino 1995].
Until the early 1990's, knowledge engineers were mainly concerned with modeling
how people think. A shift in perspective turned the focus to modeling “systems in
the world” [Clancey 1993, 34].

This shift in perspective emphasizes the importance of modeling the environment of a
system, i. e. the problem domain. The problem domain is assumed to be part of an
objective reality. The underlying assumption seems to be that there is only one such
objective reality which is universally accepted and which can be represented. This is
where philosophical Ontology is expected to be of help. Philosophical Ontology is

11

Part 1: Ontology and ontologies

concerned with an account of reality. Therefore, knowledge engineers turned to
Ontology for insights about the modeling of reality. [Guarino 1995]

With the increasing importance of knowledge related technologies, the term
ontology10 is now commonly used in other areas of informatics as well, namely in
information system design and in system development. Though the term ontology
remains the same, it is often used with different meanings.

Even within one community different meanings of the term ontology can be
observed. At the national conference of the American Association for Artificial
Intelligence Welty, Lehmann, Gruninger, and Uschold identified among themselves a
number of different usages of the term ontology. Their note for the slide titled “What
is an Ontology?” (cf. figure 1) reads:

“Answers to the question, 'What is an Ontology' vary. Rather than even try
to achieve consensus among ourselves, we identified a spectrum of possible
definitions along the axis of axiomatization.”

([Welty et al. 1999], notes for slide three “What is an Ontology”)

As figure 1 shows, the term “ontology” is used to refer to a wide range of entities.
An ontology can be anything from a catalog of words to a logical theory expressed
as a set of general logical constraints. Depending on the complexity of the
representation, this may encompass the possibility of automated reasoning.

Others, like Guarino (1998), presuppose an ontology to always be rigorously defined
in terms of a logical theory.

10 For the rest of this thesis the term ontology will be used to refer to its meaning in
informatics, not philosophy. The latter will henceforth be referred to as a philosophical
ontology or an ontology in philosophy.

12

Figure 1
What is an ontology? (Based on [Smith and Welty 2001, foreword, page v])

complexity
without

automated reasoning

a catalog

a set of
text-files a thesaurus

a glossary
a collection of
taxonomies

a collection of
frames

a set of general
logical constraints

low high
with

automated reasoning

Part 1: Ontology and ontologies

The common feature of all these different meanings of “ontology” lies in the subject
of representation: All ontologies in one way or the other represent concepts and
their relations.

Turning from formal to functional aspects, another distinction of the term's usage
may be observed: This distinction has to do with an ontology's function as a means
of communication between different agents. The term agent is used by Gruber (1993)
and Guarino (1998) to refer to computer agents .

Others explicitly refer to both humans and computer agents and assume that in the
context of ontologies, humans and computer agents can be treated as being equal
([Maedche and Staab 2001] and [Noy and McGuinness 2001]).

1.2 Ontologies and conceptualization

In his seminal paper, Gruber defines an ontology as “an explicit specification of a
conceptualization.” [Gruber 1993, 908]

He describes a conceptualization as “the objects, concepts, and other entities that are
assumed to exist in some area of interest and the relationships that hold among
them.”11 [Gruber 1993, 908] If he would leave it at that, a conceptualization would
literally consist of objects, concepts, etc. and their relations. Instead he continues: “A
conceptualization is an abstract, simplified view of the world that we wish to
represent for some purpose.” [Gruber 1993, 908] Thus, a conceptualization is not
identical with the objects and relations themselves but is instead an abstract and
simplified view of these objects, concepts, etc. and relations among them. It resides
therefore on a more abstract level than a philosophical ontology which is concerned
with the objects themselves.

Another common definition of ontologies in informatics comes from Guarino (see,
for example [Guarino 1998]). For Guarino the term conceptualization refers to the
philosophical meaning of ontology. It is merely a different name to avoid confusion
[Guarino 1998].

Zúñiga gives yet another explanation in [Zúñiga 2001]. She argues, that computer
scientists may think that the term conceptualization refers to the philosophical
meaning of ontology, but that it in fact does not.

Obviously the term conceptualization is used very differently by different authors,
just like the term ontology. Let us for the moment assume Gruber's position and
return to the original question of defining an ontology in informatics.

Gruber's definition of an ontology in informatics together with his notion of
conceptualization results in the following definition:

11 He attributes this notion of conceptualization to [Genesereth and Nilson 1987].

13

Part 1: Ontology and ontologies

(1) An ontology (in informatics) is an explicit specification of one or more
person's abstract and simplified view of the objects, concepts, and other
entities and their relations in a domain.

Gruber does not define the term specification but he states: “Formally, an ontology is
the statement of a logical theory.” [Gruber 1993, 909] Thus, a specification in
Gruber's sense clearly means a formal specification.12 This leaves us with the
following definition:

(2) An ontology (in informatics) is a formal specification in the form of a
logical theory of one or more person's abstract and simplified view of the
world or of part of the world.

Guarino wants to “refine” Gruber's definition when he defines an ontology as “a
logical theory accounting for the intended meaning of a formal vocabulary, i. e. its
ontological commitment to a particular conceptualization of the world.” [Guarino
1998] He also emphasizes that a philosophical ontology (what he calls a
conceptualization) is language-independent, while an ontology in informatics is
language-dependent.

Guarino, Gruber, and Zúñiga seem to share the assumption that there is such thing
as an objective reality which can be represented by some means of representation in
an objective way. This notion of ontology is suitable in the context of automated
reasoning.

I will call this the formal notion of ontology or simply refer to it as the concept of
formal ontologies, to avoid confusion with a different notion of ontology that is
suitable for the context of knowledge sharing between humans, which I will
introduce in the next section.

1.3 Formal vs. situated ontologies

The notion of formal ontologies in the sense just described, includes a set of common
assumptions which have already been mentioned in the previous sections:

• There is such a thing as an objective reality which is universal for
everyone.

• This reality is objectively represented by philosophical ontologies which
are the basis for a conceptualization and ontology in informatics.

• Human agents are equivalent to computer agents in the context of
communication with the help of ontologies.

Another assumption that arises directly from the “objective reality”-assumption is
implicit in the notion of reusing ontologies, which is a common goal in the field of
ontology (in informatics):

12 Though he does allow room for “human-readable text” [Gruber 1993, 909] with informal
descriptions of the ontology's concepts.

14

Part 1: Ontology and ontologies

• There is such a thing as an “eternal domain” which, once truthfully
represented, can be reused indefinitely.

Together, these assumptions paint a picture of formal ontologies which are based on
a philosophical ontology to capture reality and enable the de-contextualization of
knowledge. In the light of Zúñiga's characterization of philosophical Ontology as
something that “is not concerned with how people know things in a particular
sphere, nor about how they experience these things, or what language they use to
refer to them” [Zúñiga 2001, 195], these assumptions should be challenged. If a
philosophical ontology does not allow for any kind of view that a user might have,
then an ontology in informatics cannot be a specification of such an ontology.13

In the context of knowledge sharing between humans, these assumptions may be
replaced with a different set of assumptions resulting in a completely different
picture. First, one may assume that there is not just a single objective reality but a
multitude of realities. These realities cannot be represented by an objective
representation. Instead, a group of people may be able to agree upon some
representation that reflects their particular view. To emphasize the non-objective,
consensual nature of this representation, I will call a conceptual view as opposed to a
conceptualization.

In this context the equivalence of humans and computer agents, that is often implied
or explicitly stated (cf. [Oppermann, Schnurr and Studer 2001], [Guarino 1998]), does
no longer make sense. A person has a conceptual view of the world but a computer
agent does not. Instead, a person imposes her conceptual view onto the software
agent. Thus, Mahesh and Nirenburg (1995) introduced the notion of a situated
ontology:

“A situated ontology is a world model used as a computational resource for
solving a particular set of problems. […] World models (ontologies) in
computational applications are artificially constructed entities.”

[Mahesh and Nirenburg 1995, 1]

This leads to a revised set of assumptions which appears to be more suitable in a
social context:

• There is not one reality but a multitude of realities.

• A group of people can agree on a shared conceptual view that reflects a
shared view of the world.

• Humans impose their conceptual view onto computer agents.

One may reject the idea of multitude of realities. This does not have to be taken
literally. With respect to natural language processing, Hobbs (1985) states: “There's
too much of a mismatch between the way we view the world and the way the world

13 The same is true for software agents, because they, too, have a perspective that is not
neutral in the sense a philosophical ontology is neutral.

15

Part 1: Ontology and ontologies

really is.” [Hobbs 1985, 68] He suggests to choose a representation based on how we
talk about the world, not on how the world really is.

Based on these new assumptions the notion of a situated ontology may be defined:14

(3) A situated ontology is a description of the conceptual view of a person or
a group of persons that the person or persons choose to represent for some
purpose.

This definition allows ontologies to come in different forms. It excludes neither an
informal description in the form of a text nor a rigorous specification using first
order logic. While for the purpose of a computer system a formal specification will
be desirable to support computations like automated reasoning, an informal
description may be useful as well; especially during the design of the ontology and
for communication with people that are not experienced in formal representation
languages.

The definition also makes explicit that a situated ontology in informatics is not
directly related to a philosophical ontology by emphasizing that it is the view of a
person that is being specified. This does not mean that computer scientists cannot
learn from Ontology when designing their ontologies. But they should be aware of
the different epistemological status of ontologies in informatics and philosophy: the
former specify a certain view of the world, the latter a true account of existence,
independent of any observer.

1.4 Situated ontologies in communities of practice

Acknowledging the situatedness of ontologies as artifacts calls for a different view
on the design and use of ontologies. Communities of practice form a suitable frame of
reference when studying the use of computer artifacts. Seeing ontologies as
boundary objects between communities of practice enables us to view them as situated
and plastic artifacts that change over time and in the hands of different people.

The concept of boundary objects can best be explained with reference to the concept of
community of practice. Communities of practice can be characterized as “shared
histories of learning” [Wenger 1998, 103]. They cut across organizations, but their
members all share a commitment for a specific domain of interest, share a sense of
community, and actually engage in some form of shared practice. Certain groups,
like claims processors at an insurance company or programmers at a software
company, do not automatically constitute communities of practice. But if the
programmers regularly meet to exchange ideas and learn from each other, then they
have formed a community of practice. In this sense we are all members of a number
of different communities of practice [Wenger 1998].

The concept of boundary objects was introduced by Star (1989). Boundary objects are
“those objects that both inhabit several communities of practice and satisfy the

14 This definition is based on the definition of a system by Nygaard (1986).

16

Part 1: Ontology and ontologies

informational requirements of each of them.” [Bowker and Star 1999, 16] The
interesting thing about boundary objects is their ability to “travel” across borders of
different communities of practice: They can be accommodated to the special needs of
each community of practice while maintaining an identity of their own [Bowker and
Star 1999, 16].

Classifications, like a thesaurus, are a good example of boundary objects. A
thesaurus is a controlled vocabulary that has a certain structure. Librarians
commonly use a thesaurus to classify books. A student will use the same thesaurus
for a different purpose: to locate a book. Here, the thesaurus is used both to classify
books as well as to locate them. The thesaurus can be seen as a nexus were different
practices meet.

Apparently, the student would not be able to locate the book if the librarian and the
student do not share a certain degree of understanding of the thesaurus' purpose
and the meaning of the thesaurus' terms. This shared understanding is not inherent
to the thesaurus but arises from the practice of using it for a purpose.

Bowker and Star point out that boundary objects cannot easily be engineered.15

Instead, boundary objects “grow” from a common practice. This may happen by
using them like tools or as the basis for a certain practice. The same is true for
situated ontologies. Their usefulness and acceptance for knowledge sharing depends
on their ability to be used as tools or serve as the basis for practice of the people
involved. A simple engineering approach to create an ontology is not enough to
ground it in a community of practice. This is acknowledged by Uschold and Jasper
(2003) in their report on the Boeing knowledge management project:16

“[...] we were faced with the realization that people will resist imposition of
a global vocabulary, and therefore ways must be developed to reap the
advantages of a standard vocabulary while allowing individuals to continue
to use their own terms locally.”

[Uschold and Jasper 2003, 235]

Four characteristics are expected to support the formation of boundary objects (see,
for example [Bowker and Star 2000]; the examples for each property are taken from
[Wenger 1998]):

1. Modularity, in the sense that a newspaper contains a diverse collection of
articles: every reader may attend to articles which are of interest from
their specific point of view while ignoring others.

2. Abstraction, in the sense that a topographic map reflects only certain
properties of the terrain, while abstracting from other properties (like the
kind of vegetation)

15 As example of attempts to engineer boundary objects in the context of informatics, Bowker
and Star cite the design of information systems that allow for access by people with very
different point of views [Bowker and Star 1999, 305].

16 This project will be introduced in the next chapter.

17

Part 1: Ontology and ontologies

3. Accommodation, in the sense a building can accommodate to the specific
needs of its tenants, caretakers, owners etc.

4. Standardization, in the sense a library thesaurus states how the terms
ought to be used for classification.

Obviously a situated ontology is a candidate for becoming a boundary object
because it has the potential to exhibit all of these four characteristics. A situated
ontology will not necessarily have all four characteristics. Nor will a situated
ontology automatically become a boundary object. But the odds can be increased by
designing situated ontologies based on classifications which are already shared by
different communities of practice.

This section offered an alternate view on ontologies. Viewing ontologies as
boundary objects enables one to focus on communication and learning, drawing the
attention to the role ontologies may play in a social context. This is not to say that the
formal aspects are not important. But the role of ontology artifacts in a social context
is equally important.

In the chapter “Evaluation” I will return to the subject of ontologies as boundary
objects, suggesting that techniques from software design might help in the designing
of ontologies as potential boundary objects.

1.5 Computer-implemented ontologies

While ontologies do not necessarily have to be computer-implemented, this becomes
a central concern in the context of automated knowledge sharing and reuse between
software agents. This is also a central concern in the literature about ontology
artifacts in informatics. For the KMOD ontology, the reuse of existing ontologies was
considered as well.17

To facilitate reuse of existing ontologies, Guarino (1998) suggests a classification of
four types of ontologies based on their content. This classification divides types of
ontologies into three levels of generality. These four types of ontologies are
distributed among the three levels of specialization as follows:

1. level: Top-level ontologies are the most general ontologies. They should
define very basic concepts like time and space.

2. level: Domain ontologies and task ontologies are more specialized than top-
level ontologies but are more general than application ontologies. They should
define general concepts related to a generic domain (like airplanes) or task
(like constructing) respectively.

3. level: Application ontologies are the most specific ontologies. They usually
specialize upon concepts from both domain and task ontologies.

17 This will be discussed in section 2.2 “Related work” below.

18

Part 1: Ontology and ontologies

Reuse may be achieved in the following way (cf. figure 2): The ontologies “Ontology
2” and “Ontology 3” specialize upon the same (more general) “Ontology 1”. The
expectation is, that a specialized concept from one of the specialized ontologies can
be more easily translated into concepts of the other specialized ontology, because
they both use the common “vocabulary” of the general ontology “Ontology 1”.

Guarino (1998) also suggests another kind of distinction related to the dynamic
aspects of computer-implemented ontologies. This distinction is based on their
usage in the process of software development and use: the time that the ontology is
used (the temporal dimension), and the function it is used for (the functional
dimension).18

In the temporal dimension, one can distinguish between usage of ontologies at
development time of the software vs. usage at run time of the software. In the
functional dimension, the distinction can be made between usage as the basis for the
software's user interface, the application component, or the database component.

An ontology may be categorized using these two dimensions into any of the six
combinations of temporal and functional usage, or a combination of the six. Figure 3
(on the next page) shows a matrix of these two dimensions. The matrix is divided
into six regions, one for each of the possible combinations.

An example: Protégé builds a tree of classes from the class-hierarchy of an ontology
and creates a user interface to enter slot values, etc. Therefore, Protégé is an instance
of a tool that uses an ontology at run time to create a user interface. This is indicated
in figure 3 by the ellipse labeled “A Protégé-ontology”.

The three distinctions presented here―content, time of use, and function―will be
used in the next chapter to categorize the KMOD ontology.

This distinction serves well for the classification of existing ontologies. However, for
the design of computer-implemented ontologies, design criteria are needed. Gruber

18 The latter is referred to as the structural dimension in [Guarino 1998].

19

Figure 2
Example: Two special ontologies (2 and 3) specialize upon the same

general ontology (1). The arrows represent the specialization-relation.

Ontology 1
(general)

Ontology 2
(specialized)

Ontology 3
(specialized)

specializes specializes

Part 1: Ontology and ontologies

(1993) suggests the following criteria for the design of formal ontologies for
knowledge sharing and reuse between computer agents:

• Clarity: Terms should be rigorously defined using logical axioms
whenever possible, and should include an informal description.

• Coherence: Inference should not lead to contradictions. Formal
definitions and informal description should not contradict each other.

• Extendibility: Future use should be anticipated and the introduction of
new terms should not necessitate changes of existing definitions.

• Minimal encoding bias: The implementation should not depend on a
particular symbol-level encoding. Results if design decisions are made
because of convenience of notation or implementation.

• Minimal ontological commitment: For a particular knowledge sharing
purpose, only the weakest assumptions possible about the domain should
be modeled.

For the design of situated ontologies, these criteria may not be suitable. Uschold and
Jasper (2003) observed that workers at Boeing resisted the imposition of a controlled
vocabulary. Neither of the five design criteria above addresses this kind of problem.
Instead, the four enabling characteristics of boundary objects, introduced in section
1.4 “Situated ontologies in communities of practice”, could serve as general
guidelines for the development of situated ontologies. For the evaluation of the
KMOD ontology, these characteristics will be used.

20

Figure 3
Distinguishing ontologies by dynamic aspects: time of use and function.

run timedevelopment
time

for the
user interface

for the
application
component

for the
database

component

A
Protégé ontology

time of use

function

Part 1: Ontology and ontologies

1.6 The notion of ontologies in this thesis

The KMOD ontology is intended for knowledge sharing between humans, enabling
people from different communities of practice to communicate about knowledge at
Airbus. Currently, the ontology represents knowledge about different aspects of the
company: The types of aircrafts which Airbus produces are represented, as well as
the processes involved in designing such aircrafts, and the people who actually
design them. This information can be used by managers from different departments
to assess critical knowledge areas.

To identify the relevant concepts a number of practitioners were interviewed. These
interviews served as the foundation for the design of the ontology. Though the
KMOD ontology is implemented in such a way as to support limited automated
reasoning, it is not an ontology for software agents. Thus, the KMOD ontology will
be presented in this thesis primarily as a situated ontology.

21

Part 2

The KMOD project

Part 2 takes a look at the KMOD project. A
brief introduction of related work is followed
by a description of the tools which were used
for the KMOD project, including the Protégé
meta-model. The chapter concludes with an
explanation of the process that was used for
creating the KMOD ontology.

Part 2: The KMOD project

2 Part 2: The KMOD project

2.1 Project overview

The project's goal was to create an account of Airbus' knowledge including an
assessment of that knowledge. Here, assessment means to assess knowledge using
different criteria, like knowledge which is critical and knowledge which is common
—always with respect to Airbus' business. This “map of knowledge” was to be made
available to users via a web portal. The web portal was to be built using an ontology,
the so called KMOD ontology. The portal should not only be used to browse the
ontology but also to answer queries with respect to the assessment of the knowledge.
This kind of company-wide knowledge assessment had never before been done at
Airbus. In the beginning it was expected to be useful for two kinds of users:

• New employees who want to get an overview of what their own
department knows and how it is related to the knowledge of others.

• Managers who are interested in a complete account and an assessment of
Airbus' knowledge.

The KMOD team had hoped to be able to consider both views, but during the course
of the project the focus turned more and more to the latter. The reason was that it
was too difficult to keep track of both views.

While the final goal was an account and the assessment of all of Airbus' knowledge,
the project was conducted in one department of Airbus, EGA. The intention was to
successfully develop a web portal for EGA and then modify it for the needs of other
departments. If all portals use the same underlying KMOD ontology it should be
easy to join them into a single portal for Airbus as a whole.

When I joined the project, work had already commenced for over a year. A detailed
document (including a mind map) about EGA's knowledge with results from
interviews had been compiled. Mainly from this document with the interview
results the KMOD ontology had to be designed as a basis for the web portal.

2.2 Related work

The KMOD project was not the first to aim at building an ontology in the context of
knowledge management for an enterprise. Related efforts are a recent knowledge-
management project at Boeing [Uschold and Jasper 2003], and, larger and more
general in scale, the TOVE-project [Fox1992], and the Enterprise Ontology
[Uschold1998].

On the subject of knowledge assessment, the KMOD team was not able to locate any
publicly available information.

23

Part 2: The KMOD project

The case of Boeing

The Boeing project aimed to support Boeing's service representatives using a
combination of document retrieval yellow pages and system. A service
representative is a person who is contacted by Boeing customers to assist in solving
specific problems which the customer is not able to solve alone. The goal was to
create a system that the service representative can easily query to locate relevant
Boeing experts and documents which may have or contain necessary information for
the task at hand.

The service representative does this by selecting a request type (like “Part
Substitution”), the wanted resource (this includes both names of experts and
documents), and the relevant concepts (like “Flight Control”) from a predefined list.
The system would interpret the submitted form as a query meaning e. g. “Show me
the names of experts which have expertise in Part Substitution with regard to Flight
Control.” This query is run against a metadata repository—the database—that
contains the relevant information about the documents and the experts. The result of
the query is then displayed to the user.

The system is build around a number of technologies, the most important being
RDF19, F-Logic, and the Boeing thesaurus. RDF and F-Logic rules are used in a
metadata repository that contains information about the experts and documents. The
Boeing thesaurus serves as a “lightweight ontology” [Uschold and Jasper 2003, 235]
for this metadata repository, with approximately 37,000 concepts and 100,000
relations among them. The thesaurus has originally been developed and maintained
by Boeing for the purpose of company-wide document classification and retrieval.
Uschold and Jasper emphasize the successful exploitation of the thesaurus in a
context it was not originally designed for: the search for experts.

The project at Boeing and the KMOD project share the general context of knowledge
management with semantically enriched technologies for the aircraft industry. But
while Boeing wants to support a very specific task at hand, KMOD aims at creating a
new system for a new task. Boeing wants to support a task that was previously
conducted without a specialized system on a regular basis, while KMOD aims at
enabling the task of company-wide assessment of knowledge.

A controlled vocabulary like the Boeing thesaurus would have been helpful for the
development of the KMOD ontology. But because Airbus does not currently have a
controlled vocabulary the KMOD ontology had to be developed by other means,
namely, by conducting interviews with domain experts.

The Boeing portal assists users in querying the system as described above, by letting
them select words from predefined lists. This allows for very easy creation of
queries, but it offers limited flexibility, because all queries have essentially the same
structure. For the Boeing system this is not a drawback, because it wants to support
exactly this one kind of query.

19 Resource Description Framework, an XML-dialect that can be used for semantic annotation of
resources. Cf. http://www.w3.org/RDF/

24

Part 2: The KMOD project

The KMOD portal will provide assistance as well, but a more general approach
seemed necessary. For this purpose a simple template language has been developed
that supports the creation of query templates to support different kinds of queries.
The user is presented with an informal description of the query, and is prompted to
fill in the template values, e. g. “Who knows something about the knowledge area
X?” Here, the user will be prompted with a list of all knowledge areas. She can
choose one or more knowledge area from the list and submit the query. Other, more
complex queries are possible as well.

TOVE and the Enterprise Ontology

Both TOVE20 [Fox and Fadel 1993] and the Enterprise Ontology (hereafter EO)
[Uschold et al. 1998] aim at modeling a complete enterprise. They do this with a
number of ontologies which together form a complex framework.

The KMOD team expected to be able to partially reuse concepts from either of these
enterprise ontologies. This proved to very difficult owing to the size and complexity
of both frameworks. A brief analysis showed

• that TOVE and EO contain many concepts that would not be needed for
the KMOD ontology, and

• that it would be very difficult to only reuse the needed concepts because
they depend on other concepts.

Thus, the idea of reusing either TOVE or EO was abandoned.

2.3 Tools for the KMOD project

This section describes the tools that were used to create the KMOD ontology. The
description of how the tools were actually put into use can be found in the section
“Designing the ontology” at the end of this chapter.

2.3.1 Overview of the Tools

The central tools are Protégé-2000, Flora-2, which were used for the purpose of
knowledge representation and inference, and a combination of Tomcat/JSP, which
was used to create an integrated user interface for the final application:

• Protégé-200021 as an ontology editor,

• Flora-2 as an F-Logic-based query engine,

20 TOVE is the acronym for “Toronto Enterprise Project”.

21 We actually used a derived version called OntoWorks that was developed by
DaimlerChrysler based on Protégé-2000 version 1.8. Because we did not use any of the
special abilities of OntoWorks I will continue to use the name Protégé-2000 instead.

25

Part 2: The KMOD project

• Java Server Pages and Tomcat (hereafter Tomcat/JSP) to implement a
web application.

The main reason for choosing these tools was the experience that DaimlerChrysler
Research & Development Berlin had gained in previous projects. The combination of
tools had already been successfully used by them to implement other ontology-
based applications, including web applications.22

Protégé-2000

Protégé-2000 is an open-source, frame-based ontology editor developed at Stanford
University's medical informatics department.23 It is written in Java and supports
plug-ins. Protégé can be used to create a hierarchy of classes and instances of those
classes.

The user interface is divided into different tabs which offer different views on the
current model24: the class-browser tab to create and view properties of classes, the
instance tab to create and view instances, etc. New tabs can be added via the plug-in
mechanism. We used a plug-in called OntoQuery25 to connect Protégé-2000 to Flora-2.

Protégé also offers a Java-API that can be used from any Java-program to access a
Protégé model without the Protégé user interface.

The KMOD team uses Protégé together with the OntoQuery plug-in to create and
maintain the ontology and the knowledge base, including the Flora-2 rules and
queries. The Protégé-API is used in a web portal to access the KMOD ontology. Note
that the KMOD ontology can currently only be manipulated using Protégé or the
Protégé-API, but not via the web portal.

Protégé supports the creation of a class-hierarchy and instances, including the
propagation of properties via multiple inheritance. (See the next section “The
Protégé meta-model” for more information.)

Flora-2 and the OntoQuery plug-in

Flora-2 is an implementation of the F-Logic language which supports complex
objects, inheritance and deduction.26 Being also a frame-based system, Flora-2 lends
itself easily to extend the expressive power of a Protégé model. Its meta-model is

22 The previous projects were concerned with solving time constraints. These ontologies
could not be reused for KMOD.

23 The Protégé homepage is at http://protege.stanford.edu

24 In Protégé parlance the class hierarchy by itself is called the ontology, while the classes
together with instances is called a knowledge base. To avoid confusion with the concept of
ontology introduced in chapter 2, I will use the generic term model instead, referring to
both a Protégé ontology and knowledge base.

25 OntoQuery was developed by DaimlerChrysler Research & Development Berlin based on
the Flora-Tab plug-in by Micheal Kifer.

26 In fact, Flora-2 also integrate features of Transactional Logic which we did not use. Se the
Flora-2 homepage at http://flora.sourceforge.net for more information.

26

Part 2: The KMOD project

more general than Protégé's, e. g. in Flora-2 a frame does not have to be an instance
of another frame. It also provides an inference mechanism that goes beyond simple
inheritance: using rules (axioms) one can intensionally define properties of frames.
These rules, together with the ability to create complex queries, were the most
important reasons for extending Protégé with Flora-2.

This is achieved with OntoQuery, a plug-in that integrates Flora-2 into Protégé,
enabling the user to query a Flora-2 database from within Protégé. A query is
executed by OntoQuery via Flora-2 in a two step process:

1. First, the Protégé model is converted to Flora-2 syntax which is then passed to
Flora-2 for execution. The query itself and any Flora-2 rules that are stored in
special parts of the Protégé model are also passed directly to Flora-2.

2. The result is returned by Flora-2 and is parsed by OntoQuery for further use.
(Usually for display in the OntoQuery tab.)

Note that this is a one-way process: the Protégé model is translated to Flora-2, but
there is no translation back into a Protégé model. The Protégé model does not
change.

Also note that the first step does not only translate the Protégé model to Flora-2, but
that it also allows to include rules, which will become part of the final Flora-2 model.
This combination of rules and queries provides a powerful extension to any Protégé
model. In KMOD this mechanism was used to allow the intensional definition of
properties.

When not using the Protégé plug-in, one must use a text-editor to write the Flora-2
source code and then compile the source using the Flora-2 compiler. Alternatively,
Flora-2 may be used in an interpreted mode which allows for the interactive editing
of the program.

Tomcat / JSP

JSP is a well known server-side programming language based on the Java
technology. Tomcat is a JSP-container, i. e. a web-server that can execute programs
written in JSP. Using JSP and Tomcat made it easy to access the Protégé model
trough Protégé's Java-API. Tomcat/JSP was used to create the user interface in the
form of a web portal.

27

Part 2: The KMOD project

The KMOD web portal

Together, Protégé-2000, Flora-2, and Tomcat / JSP, make up the KMOD web portal
called OntoPortal. The architecture of the portal is in shown in figure 4.

The basis of the system is the KMOD ontology, which is currently stored as files in
the native Protégé format. It is accessed by the web portal and the OntoQuery plug-
in using the Protégé-API. The OntoQuery plug-in is used to add Flora-2's
functionality and make it available to the web portal. This includes handling the
storage and retrieval of Flora-2 rules within the KMOD ontology as well as
converting query results back to Protégé objects. The web portal uses both
OntoQuery and the Protégé-API to create the user interface for navigation and to
query the KMOD ontology, which can then be accessed with a web browser by the
user.

Other tools

Besides the aforementioned tools, a word processor was used to write informal
documentation and a drawing program to create graph representations of the
concepts in the KMOD ontology. This was necessary to communicate effectively
with other team members about the KMOD ontology. Using Protégé-2000 for this
purpose was not an option because the tree-like view of Protégé is not readily
understood by people which are unfamiliar with the program.

28

Figure 4
Architecture of the KMOD web portal. The arrows represent

communication between different parts of the system.

KMOD
Ontology

Protégé API

OntoQuery Plug-inFlora-2

Web Portal

(JSP & Tomcat)

Part 2: The KMOD project

2.3.2 The Protégé-2000 meta-model

This section introduces some concepts of Protégé-2000. The description is not a
complete account of the Protégé meta-model but concentrates instead on aspects
which are relevant for the KMOD ontology. The information is based on the
description of Protégé by Noy, Fergersen and Musen (2000).

All first-class objects of Protégé are referred to as frames27. The most common frames
are class, instance, and slot. Two other kinds of frames are metaclasses and metaslots,
which are special kinds of classes and slots, respectively.

An important relation in any Protégé model is the instance-of relation which is used
to determine the properties of a frame. Two frames may be related to each other by
the instance-of relation, which results in the one frame's properties being determined
by the other frame. To distinguish between these two frames it is helpful to name
them according to the role they play in that relation: The frame that determines the
properties is called the schema-frame, while the frame of which the properties are
being determined is called the object-frame. Thus, the instance-of relation may be
paraphrased as follows: In an instance-of relation, the schema-frame determines the
properties of an object-frame.

Most types of frames may assume either of the two roles: A class determines the
properties of an instance, while the properties of the class are determined by a
metaclass. In the former relation, the class assumes the role of the schema-frame with
respect to the instance, in the latter case, the class assumes the role of the object-frame.

Instance- and slots-frames are restricted to the object-frame role, i. e. they cannot
determine properties of other frames. The metaclass-frame on the other hand serves as
a schema-frame for class, metaslot and itself. The metaclass is therefore the only frame
that can be used to define its own properties.

Table shows all possible combinations of the instance-of relation by listing which
type of frames can be used to determine the properties of which other type of frame.

27 A note on notation: For the description of the Protégé meta-model I use italics to mark
words that refer to elements of the Protégé model.

29

Object-Frame
(properties being determined)

Schema-Frame
(determining properties)

instance class

class metaclass

slot metaslot

metaclass metaclass

metaslot metaclass

Table 1
Schema-object relation of Protégé frames.

Part 2: The KMOD project

Classes are arranged in a familiar hierarchy of super- and sub-classes. Note that
classes, metaclasses and metaslots are all part of this one class hierarchy. Except for the
standard root class THING28, a class must have one or more direct super-classes and
may have one or more direct sub-classes. Every instance is assigned to exactly one
class, making it an instance of that class and all its super-classes.

Slots are first-class objects in Protégé which means they can exist independently of
other elements. A slot can be attached to a frame in two different ways: either as a so-
called own slot or as a template slot. An own slot represents a property of the frame it is
attached to, while a template slot determines the slots of instances of that frame. Figure
5 shows an example. E. g. the slot NAME is attached twice to the class Airbus
Person (1). Once as an own slot (2), where it carries the name of the class (“Airbus
Person”), and once as a template slot (3) where it determines that all instances of
Airbus Person will also have a NAME slot. An instance inherits the template slot as
an own slot. In figure 5, the instance Mary (4) inherits its slots from its class (and all
the classes' superclasses), but for the instances the slot will be an own slot29 (5), in this
case containing the value “Mary”. Note that the class Airbus Person has also

28 THING is the standard root class of all Protégé models.

30

Figure 5
Template slots of a class become own slots of instances of that class. The dashed rounded squares

represent classes, the solid rounded squares represent instances. Dashed arrows represent
template slots, thick solid arrows represent own slots.

[Airbus Person]

NAME

“Airbus
Person”

NAME
Mary “Mary”

Airbus Person

Template slots

Instance “Mary”
 of class

“Airbus Person”

1

2
3

4 5

NAME

Own slots
(inherited from

“Airbus Person”)

Class
“Airbus Person”

Own slots
(inherited from

default meta-class)

Inheritance

Part 2: The KMOD project

inherited its own slot (2), in this case from the default meta-class which is not
displayed.

Generally, a template slot of a schema-frame determines the own slot of all object-
frames of that schema. Thus the own slots of an instance are determined by attaching
template slots to its class. The own slots of a class are defined by attaching template slots
to its metaclass. Finally, the own slots of a metaclass are defined by its metaclass. (Cf.
table)

The classes and slots together are called the ontology in Protégé, while the ontology and
instances together are called the knowledge base. I use instead the more general term
Protégé model or simply model, referring to both the Protégé ontology as well as the
knowledge base.

Every Protégé model includes a certain number of so called system classes. These are
special classes, metaclasses, and metaslots, like the standard root class THING. The
system classes may be used to customize a Protégé model. E. g. instead of using the
default metaclass STANDARD-CLASS, one may create a custom metaclass by sub-
classing either CLASS or STANDARD-CLASS. The default system classes cannot be
changed or deleted. A list of important system classes can be found in table 2.

29 This is similar to class variables and instance variables in object-oriented programming:
class variables determine values of the class, while instance variables determine values of
the instance.

31

Name of System Class Description
THING The root class of any Protégé

model. The only class that does
not have a superclass.

SYSTEM-CLASS The superclass of all special
system classes (except THING).

CLASS The superclass of all
metaclasses.

STANDARD-
CLASS The default metaclass.

SLOT The superclass of all metaslots.
STANDARD-
SLOT The default metaslot.

Table 2
Hierarchy of important default system classes.

Part 2: The KMOD project

2.4 Designing the KMOD ontology

2.4.1 The interviews

The interviews were designed and conducted before I joined the project. The
interviews were qualitative interviews in the form of guided open-questions. In this
form of interview the interviewer uses an interview guideline, i. e. a list of questions.
Instead of simply asking the questions one after the other, she encourages the
interviewee to speak freely, only guiding him from time to time or asking for
clarification on a specific point. [Flick 1995]

The people interviewed were selected from four sub-departments of EGA, ranging
across all of the four national companies. The people were selected based on two
criteria: their “professional” view, and their “national” view. The professional view
is made up of three groups of people: managers, experts, and youngsters. The
national view is made of five groups: the views of France, the United Kingdom,
Spain, Germany, and a transnational view. The distribution of the interviewees
across the national view can bee seen in table 3:

Department Airbus
France

Airbus
UK

Airbus
Spain

Airbus
German

y

trans-
national

Shape Design 3 3

Data 1 1

Support 3 2

Complete Aircraft 3 2

1

3

2

1

2

2

Total 10 8 1 8 2

Table 3
Number of interviewees from each department and national company.

For the distribution of members across the categories of managers, experts, and
youngsters the exact numbers are not available.

The overall process, from the individual interviews to the final documents, may be
described as a four step process (cf. illustration in figure 6 below):

1. The interviews were conducted in all four national companies—France, UK,
Spain, and Germany—with each country having its own interviewer.

2. During the interviews notes were taken by the interviewers which were later
used to write a summary of each interview (labeled “F1”, “F2”, “U1” and so
on in figure 6).

32

Part 2: The KMOD project

3. These summaries were then organized by each interviewer into a single
document, one for each national company (labeled “France”, “UK”, “Spain”,
and “Germany” in figure 6).

4. As the last step these three documents were compiled by the project lead into
the final summary document (labeled “Airbus” in figure 6). This final
document includes a mind map of the interview results.

This final document is the basis for the creation of the KMOD ontology.

2.4.2 Creating the KMOD ontology

The process of designing and creating the KMOD ontology was mainly my
responsibility in close cooperation with my company supervisor. It can be seen as
creating a series of versions, ranging from simple informal description to the final
KMOD ontology as Protégé models with Flora-2 rules.

The first ideas about the KMOD ontology were drafted in the form of notes,
sketches, and informal descriptions. The descriptions were created from the notes
and sketches with a word processor for easy distribution via email. These
documents were used to regularly discuss the ideas with my supervisor at
DaimlerChrysler. These discussions had two main purposes: inform my supervisor
about the current status of the ontology (including suggestions and new ideas from
his side), and discussing the future proceedings of the development process.

33

Figure 6
Creating the summary document from the interviews.

Interviews
in France

...
 summarized by

interviewer into

one document
per interview

summarized by
interviewer into

one document
per country

France

Interviews
in the UK

...

Interviews in

Spain

...

summarized by
project lead into

a single document for all of EGA
(including a mind map)

UK Spain

EGA

F1 F2 U1 U2 S1 S2

Interviews in
Germany

...

Germany

G1 G2

1

2

3

4

Part 2: The KMOD project

With the increasing complexity of the drafts, the descriptive documents were
becoming more and more difficult to create and maintain. Additionally, the
ambiguity of the informal descriptions was increasingly a source of
misunderstanding. While the informal descriptions were useful for the description
of coarse ideas in the beginning, they were now inhibiting further development and
the precise definition of concepts.

We therefore decided to replace the informal descriptions by Protégé models
instead.30 (Cf. figure 7) The initial Protégé model was created from the last informal
description. This initial model was the first in a series of continuously revised
models. These models became the basis for the communication of the current status
of the ontology. As a result of the formal nature of Protégé models, ambiguity was
no longer a problem.31 Instead, three drawbacks of Protégé became apparent:

• Lack of support for effective communication

• Lack of support for multiple versions of a model

30 The use of Protégé for the ontology creation was intended from the beginning, but it had
not been clear, when to actually start using Protégé.

31 A negative side effect that we were not aware of a the time was, that we started restricting
our way of thinking about the domain to concepts that could be easily implemented with
Protégé. This will be discussed in chapter 4 “Evaluation”.

34

Figure 7
The KMOD ontology in Protégé-2000. On the left is the class hierarchy showing the top-level

classes. The right hand side shows details of the class “Knowledge Area”.

Part 2: The KMOD project

• Lack of support for collaboration

Effective communication is increasingly difficult when the models become larger
and more complex. A Protégé model can be browsed with Protégé using different
views, usually the class-view, the instance-view, or a combination of both. Figure 7
shows a screen-shot of Protégé's class view. On the left the class hierarchy can be
seen, with the class “Knowledge Area” highlighted. The large part on the right
displays details of the selected class: the value of its own slots (Name,
Documentation etc.) and a list of the template slots below.

Here, the problem is that the only relation which can be intuitively viewed and
browsed is the super-/sub-class relation of the class hierarchy. All other relations lie
“hidden”in the template slots. For a routine user of Protégé this is not a problem
when working with a familiar model. But even a routine user will have problems
familiarizing herself with models created by others. This was sometimes the case for
my supervisor when I had made significant changes to the model: if the changes
were radical they could be very hard to comprehend using only Protégé.

To overcome this problem, I drew informal graph representations of selected details
of the Protégé model. (Cf. figure 8) Such graphs proofed useful for communicating
changes to the ontology with my company supervisor, and for communicating the
main concepts to team members who were not familiar with Protégé.

The latter was especially important because neither my supervisor nor I were
experts on the domain of aircrafts and the related issues. We sometimes had the
opportunity to discuss the ontology (using these graphs representation) with a team
member who was more familiar with the domain but not with Protégé.

A sample graph as used for communication is shown in figure 8. The rounded
squares represent concepts, in this case instances of the class “Knowledge Area”. The
arrows represent relations between the concepts, in this case a part-of relation.

35

Figure 8
Example of a partial informal graph representation of the KMOD ontology.

A310

Left wing
of A310

Right wing
of A310

is direct sub-part of is direct sub-part of

has direct
sub-part has direct

sub-part

Part 2: The KMOD project

Protégé's lack of support for versions and collaboration became apparent when both
my company supervisor and myself made changes to our copy of the model
independently. Protégé does not provide support for joining two models, which
therefore had to be done by hand. Being aware of these complications, we agreed
that changes to the model should always be made by the same person.

Flora-2 was not used until the KMOD ontology had a considerable size. It was used
to formulate rules (or axioms) and queries. The rules were first formulated as natural
language assumptions and afterwards implemented in Flora-2. They were then
tested by issuing queries and manually checking the results against the KMOD
ontology.

Figure 9 shows a screen shot of the Flora-2-plug-in by DaimlerChrysler called
OntoQuery. The center and right show details of the query “Test-Query”. The very
right hand side shows part of the axioms, which are in Flora-2 syntax. The bottom
shows the result of the query after pressing the button “query”.

This work flow was very time consuming when using the complete KMOD ontology
which contained 7067 frames at the time. Most of these frames, roughly 6600, were
in fact instances. Introducing a new axiom or changing an existing axiom resulted in
a complete recompilation of the Flora-2-knowledge-base. This process took several
minutes even on a comparatively fast computer. Though once the compilation was
complete, queries were very fast.

36

Figure 9
A Flora-2-query in Protégé-2000 (OntoWorks).

Part 2: The KMOD project

To decrease the time needed for the complete compilation of the Flora-2-knowledge-
base I removed a number of instances, creating a smaller version of the KMOD
ontology which contained only 644 frames. This reduced the compilation time to a
few seconds.

37

Part 3

The KMOD ontology

Part 3 contains a detailed description of the
KMOD ontology, including a look at the
conceptual view that underlies the ontology
and a list of the main classes.

Part 3: The KMOD Ontology

3 Part 3: The KMOD Ontology

3.1 Rationale of the KMOD ontology

The two basic criteria for the development of
the KMOD ontology are 1) the separation of
domain and assessment knowledge and 2) the
(technically imposed) demand to create a class-
hierarchy that can be used as a navigation-
menu.

The central criterion for the design of the
KMOD ontology is the separation of the
domain knowledge and the assessment of that
knowledge. The separation is expected to allow
for a reuse of the assessment related concepts of the ontology with other domain
ontologies.

The KMOD web portal (OntoPortal) is currently build in such a way that it
constructs the the navigation-menu directly from the class hierarchy of the
underlying KMOD ontology. This imposes a constraint on the class-hierarchy: The
class-hierarchy needs to be structured in a way that will enable users to easily
navigate the site.

39

Many of the concepts of the
KMOD conceptual view and
ontology are related to knowledge
management. For brevity, the
term “knowledge management”
will often be abbreviated to “KM”
in the names of these concepts.

Figure 10
Usage of the KMOD ontology

run timedevelopment
time

for the
user interface

for the
application
component

for the
database

component KMOD Ontology

KMOD Ontology

Part 3: The KMOD Ontology

The meta-model of Protégé is able to accommodate this demand by allowing a class
to have multiple super-classes. (See the description of the class Person, below.)

Using the static and dynamic criteria introduced in chapter 2, the KMOD ontology
can be classified statically as an application-ontology, because it combines both a
task- and a domain-ontology. The task is that of assessing knowledge, while the
domain is the domain knowledge that is being assessed—currently EGA's
knowledge.

Dynamically, the KMOD ontology can be classified as being used for two run time
aspects: for the database component and the user interface (cf. figure on the
previous page).

3.2 A look at the conceptual view of KMOD

This description is an attempt to spell out from my point of view32 the conceptual view
that the KOMD team developed over the course of the project—as opposed to the
KMOD ontology which was implemented in Protégé and Flora-2. This conceptual
view underlies the implemented KMOD ontology but is not identical with it (cf.
chapter 2). The team's conceptual view changed over time while we were working
on the KMOD ontology. The state described here is the one that is most closely
related to the description of the KMOD ontology in the next section.

32 A specific conceptual view was never documented or explicitly agreed upon. That is why I
describe my idea of the KMOD conceptual view.

40

Part 3: The KMOD Ontology

3.2.1 Knowledge assessment

The goal of KMOD was to create a detailed account of the department's (and
eventually all of Airbus') knowledge, including an assessment of that knowledge.
Here, knowledge assessment means how the knowledge relates to EGA's business (how
critical is the knowledge for the core business processes, how unique is it etc.).33 The
criteria for this assessment are called the knowledge assessment criteria, or simply
assessment criteria (no. 2, fig. 11 below). The criteria were taken from the interview
results document.34 Some of these criteria are listed in Table 4 (on the next page)

33 The notion of knowledge assessment used in this thesis is not connected with a different
notion which refers to the assessment of people's knowledge. The latter is used in the
context of learning and training to assess how well a person has learned something.

34 These criteria were actually compiled before the interviews were conducted. They were
not inferred from the interviews.

41

Figure 11
Relation between knowledge areas and people on the
one hand, and knowledge area and KM assessment

criteria on the other.

KM
Assessment

Criteria

Assessment Criteria
are used to assess
Knowledge Areas

People have
experience in

knowledge areas

Knowledge
AreasPeople

2

3
1

b

a

Part 3: The KMOD Ontology

3.2.2 People and experience

A meaningful account of EGA's knowledge is not complete without the concept of
people that work there. People (3, fig. 11, on the previous page) are the ones who
actually know something, they have experience in one or more knowledge areas (b,
fig. 11).

Figure 11 hides some details about the relation between people and knowledge areas
(b): A person might have a certain level of expertise for a given knowledge area
(beginner, expert etc.). We call this the person's experience.

A similar concept of experience also relates different knowledge areas. The following
informal description is an example of a case where one knowledge area depends on
another:

42

Descriptive question /
Example

Scale KMOD Name

How fast will the knowledge (k.)
grow old and obsolete?
Knowledge about the method 3D-Navier-
Stokes is still changing and would be rated
either (2) evolving or even (3) dynamic.

1) static k.
2) evolving k.
3) dynamic k.

Pace of Obsolescence

How distinct is the knowledge (k.)?
Knowledge about common basic laws in
physics would be rated (1) fundamental.

1) fundamental k.
2) advanced k.
3) innovative k.

Distinctiveness

How much has the knowledge
penetrated the company, or how far is
it spread?
Knowledge that is only shared by one or
two individuals would be rated (1)
individual.

1) individual
2) limited spread
3) collectively
shared

Knowledge Spread Across
Company

How effectively is the knowledge
used?

1) not at all
2) partially
3) effectively

Exploitation of Knowledge

How critical is the knowledge for the
successful functioning of the
company?
Knowledge that will not effect the
functioning of Airbus would be rated (1)
low.

1) low
2) medium
3) high

Criticality

Table 4
Selected KMOD knowledge assessment criteria.

Part 3: The KMOD Ontology

In order to successfully design the high lift device of an airplane, one
needs be an expert in general aerodynamics.

Consequently, a person can only master the knowledge area high lift design if she is
an expert on the knowledge area general aerodynamics. We call this the precondition of
a knowledge area. These two concepts (experience and precondition) are
represented by a single class “experience” in the KMOD ontology.35

3.2.3 Knowledge management concerns

Besides representing knowledge areas in order to assess them, the KMOD ontology
was expected to model knowledge management (henceforth KM) related concerns
and possible solutions. Another example in the form of an informal description:

Sometimes there is only one expert for a certain knowledge area. If this
expert retires without passing on her knowledge to other members of
Airbus, the knowledge is lost. To avoid such loss of knowledge the use
of knowledge management techniques would be helpful.

This example raises some general questions about the relation of concerns,
knowledge development, sharing, reusing, and knowledge management techniques.

• What are the concerns of department's members with respect to critical
knowledge?

• How do these concerns influence developing, sharing, and reusing of
knowledge?

• Which knowledge management techniques could be used to positively
influence these concerns?

35 In the beginning we had doubts about this way of representation, because experience of a
person and experience as a precondition are obviously not identical concepts. In retrospect,
it was a choice that not only worked but that also follows Hobbs idea of basing semantics
on how we talk about the world [Hobbs 1985].

43

Part 3: The KMOD Ontology

The answers to these questions come from two sources: the interviews, and KMOD's
expert on knowledge management. For the KMOD ontology we identified three
elements which we used to model the answers (cf. figure 12): KM concerns (6), KM
functions (5) (development, sharing, reusing)36, and KM initiatives (4).

KM functions are influenced by both KM concerns and KM initiatives (e and c in fig.
12): In the example above, the loss of knowledge through retirement (KM concern)
has a negative impact on the ability to share the knowledge (KM function “share”)—
knowledge which the company has lost can obviously no longer be shared. One
known possibility to positively influence the sharing of knowledge (again, KM
Function “share”) is the establishment of experience boxes37 (a KM initiative).

The interview result document also included a list of suggested KM initiatives for
each KM concern (d, fig. 12). This list was compiled by Airbus' knowledge
management experts. We included these suggestions as a relation between KM
initiatives and KM concerns.

36 During the course of the project more KM functions were added to this list, like the
transformation between tacit and explicit knowledge.

37 Experience boxes refers to the practice that people that do similar things should be located
close to each other, in the expectation that they will share their knowledge.

44

Figure 12
Relation between KM initiatives, KM functions, and

KM concerns.

KM
Functions

KM Initiatives
influence

KM Functions

KM Initiatives
are suggested
for countering
KM Concerns KM Concerns

are related to
KM Functions

KM
Concerns

KM
Initiatives

4 5

ed

c

6

Part 3: The KMOD Ontology

3.2.4 Six kinds of knowledge areas

So far, knowledge areas are something that can be assessed using the assessment
criteria. To enable the modeling of relationships between certain knowledge areas we
need a more detailed concept. The project team identified six main kinds of
knowledge areas based on the interview results as well as the team members'
knowledge about industrial engineering (numbers 1-6 in figure 13):

1. Structures: Any kind of physical object (currently only airplanes' parts).

2. Results: A document like the design of an airplane or a test result.

3. Processes: A process like designing an aircraft or a part of an aircraft.

4. Methods & Tools: A method (like eXtreme Programming) or a tool (like a
word processor).

5. Physics: The subject of physics, especially aerodynamics.

6. Engineering Criteria: Aircrafts are designed to have certain properties, like
having a low weight and low drag while being able to carry many people.
These three (and other) conflicting goals are called engineering criteria in
KMOD.

Using relations between these specializations of the knowledge area concept, the
inner structure of the domain can be expressed. Between the six, the following
relations are assumed to exist (letters a-f in figure 13):

45

Figure 13
The six main kinds of knowledge areas and their relationship.

Results PhysicsEngineering
Criteria

Structures

Processes

Methods
&

Tools

Results
describe

Structures
Methods & Tools

are used to
achieve Results

Physics is
modeled with

Methods & Tools

Results
influence

Engineering
Criteria

Processes
have

Results

Methods & Tools
support

Processes

Knowledge Areas1

2

3

4 56

c

a

d

b e

f

Part 3: The KMOD Ontology

a) A structure may be defined by some result.
(An airplane (structure) is defined in the design blueprints for that plane
(result).)

b) A process may yield a result.
(The design phase of a new aircraft (process) results in a number of design
documents (result).)

c) A result may have an influence on an engineering criterion.
(The design documents (result) for an aircraft have an influence on the
drag of the aircraft (engineering criterion).)

d) Methods & tools may be used to create a certain result.
(3D-Navier-Stokes (method) is used in creating the design document of an
airplane (result).)

e) Methods & tools may be used to support a certain process.
(3D-Navier-Stokes (methods & tools) is used during the design phase of a
new airplane (process).

f) Methods & tools may be used to model (certain aspects of) physics.
(3D-Navier-Stokes (methods & tools) can be used to model the flow of air
(physics).)

The concepts of process and result are more specific than the chosen names suggest.
The term process in the context of KMOD does only include such processes which
yield a result in the form of a document. This excludes all kinds of manufacturing
processes. Similarly, the term result is meant to refer exclusively to documents. Thus,
the current version of KMOD cannot be used to represent the actual manufacturing
process of an aircraft, but it can be used to represent the process of planning and
designing such an aircraft.

The main reason for this restriction to “mental” processes and results lies in the
department's field of work: The KMOD project took place in a department that
designs aircrafts but that does not manufacture them. Physical processes, like
manufacturing, played no role in the interview result document that was the basis
for the ontology.

46

Part 3: The KMOD Ontology

3.2.5 Overview of the conceptual view of KMOD

Figure 14 is an overview of the main concepts of the KMOD conceptual view. The
central concept is knowledge area (1). A knowledge area can be assessed (a) with the
help of knowledge assessment criteria (2). People (3) can have experience (b) in a certain
knowledge area.

A knowledge management initiative (4) is a special kind of knowledge area (indicated
by the placement of (4) inside the boundaries of (1)) that is related (c, d) to both
knowledge management functions (5) and knowledge management concerns (6), which are
themselves related to each other (e).

47

Figure 14
Overview of important KMOD concepts (1-6) and their relations (a-e).

KM
Functions

KM
Assessment

Criteria

Assessment Criteria
are used to assess
Knowledge Areas

KM Initiatives
influence

KM Functions

People have
experience in

knowledge areas

KM Initiatives
are suggested
for countering
KM Concerns

KM Concerns
are related to
KM Functions

KMOD overview

KM
Concerns

Knowledge
Areas

KM
Initiatives

People

2

3

1

4 5

e

b

d

c

a

6

Part 3: The KMOD Ontology

3.3 The main classes of the KMOD ontology

The complete first two levels38 of the KMOD ontology's class-hierarchy are shown in
table 5. THING is the root-class of every Protégé model and is listed only for
reference.

38 Not counting Protégé's standard root-class THING.

48

• THING
• Knowledge Area

• Structure
• Process
• Result
• Methods and Tools
• Engineering Criterion
• Physics

• Person
• Airbus Person
• Non Airbus Person

• Organizational Entity
• Organizational Unit
• Manufacturing Site
• Person

• Relation
• Experience
• Function Influence on

Criteria
• Knowledge Assessment Related

Class
• KM Function
• KM Concern
• KM Practice
• Characteristic

Table 5
Hierarchy of the main classes of the KMOD ontology. Note that the same

class “Person” appears twice: as a subclass of “THING”, and as a subclass of
“Organizational Entity”. See the description of “Person” in this section for more

information.

Part 3: The KMOD Ontology

The following introduction of the main classes lists for each class a short informal
description of the class followed by a table of its properties (template slots, super-, and
subclasses). Table 6 shows an example for a class called “Sample Class”.

The informal description of a class will contain references to the template slots of
that class in parenthesis, e. g. (1). The numbers refer to the number of the template
slot from the property list of the class. In the example of table 6 the number (1) refers
to the slot first slot.

The names of classes, slots and types are set using a typewriter font. Class
names start with an Uppercase letter, while slot names start with a lowercase
letter. The default slots of Protégé (like name and documentation) are omitted
for brevity.

The list of template slots gives the type of the slot value in parenthesis. E. g.

has precondition (Experience)
means that the value of the slot named has precondition is of type
Experience (which is a class). If the type of the template slot equals the class the
slot belongs to, then the class name is omitted, e. g. the following slot is a direct slot
of the class Process:

49

Sample Class

This Sample Class is introduced by an informal description
followed by a list of its properties. The informal description refers
to slots of a class by using one or more numbers. In this example
(1) refers to the slot called first slot.

Sample Class
Template
slots:

(1) first slot (value type of first
slot)

(2) ...
Superclass: List of superclasses
Subclasses: List of subclasses

Table 6
Example of a description for a class called “Sample Class”.

Part 3: The KMOD Ontology

is direct sub-process of
This means that the slot is of the type it belongs to, in this case Process, because no
other type is given in brackets.

Classes with names in the plural form will also be referred to in their single form
and vice versa to avoid grammatical errors.

3.3.1 Complete list of top-level classes39

Some classes, like the Relation class, are referred to as convenience classes. Such
classes have no formal meaning in the KMOD ontology, which means that they
could be removed without harming or changing the rest of the ontology. The
purpose of these classes is to make the ontology easier to understand and maintain,
because they provide a description for their subclasses and make them more
conveniently accessible in Protégé.

Knowledge Area

The Knowledge Area class is the central class of the KMOD ontology, having
more template slots than any other class. Instances of this class represent what an
Organizational Entity can have knowledge about. The two classes are
connected via the class Experience. Two Knowledge Areas can be related to
each other in three different ways (from the most specific to the most general):

• one is a precondition for the other (10,13),

• one is in some way involved in the other (11,12),

• one is in some other way related to the other (6).

For some Knowledge Areas there exists a Manufacturing Site that is
officially responsible for that Knowledge Area (18). The rest of the slots have the
purpose of assessing the Knowledge Area using instances of a subclass of KM
Characteristics (1, 2, 3, 5, 6, 7, 12, 13, 14, 15, 17).

39 Again, Protégé's default root-class THING is omitted.

50

Part 3: The KMOD Ontology

Knowledge Area
Template
slots:

(1) applicability (Applicability
Characteristic)

(2) cost of retraining and transfer (Cost of
Retraining and Transfer Characteristic)

(3) criticality (Criticality Characteristic)
(4) directly related to
(5) distinctiveness (Distinctiveness

Characteristic)
(6) ease of formalization (Ease of

Formalization Characteristic)
(7) exploitation of knowledge (Exploitation of

Knowledge Characteristic)
(8) has precondition (Experience)
(9) involved knowledge areas
(10) is involved in
(11) is precondition for (Experience)
(12) knowledge flow (Knowledge Flow

Characteristic),
(13) knowledge spread across company (Knowledge

Spread Across Company Characteristic)
(14) pace of obsolescences (Pace of Obsolescence

Characteristic)
(15) proficiency (Proficiency Characteristic)
(16) responsible site (Manufacturing Site)
(17) usefulness across company (Usefulness

Across Company Characteristic)

Superclass: THING

Subclasses: Engineering Criteria
Method and Tool
Physics
Process
Result
Structure

51

Part 3: The KMOD Ontology

Organizational Entity

An Organizational Entity is the superclass of classes which represent
anyone or anything that is regarded part of an organization, like an employee (e. g.
John Smith), an organizational unit (e. g. EGA), or a manufacturing site (e. g. Airbus
Bremen). An O. can have experience in some Knowledge Area (1).

Organizational Entity
Template
slots:

(1) has experience (Experience)

Superclass: THING

Subclasses: Manufacturing Site
Person
Organizational Unit

Person

Person is the superclass for the two classes Airbus Person and Non Airbus
Person. Note that Person appears twice in the table above (table 5) because of
the design criteria of the KMOD ontology: From the perspective of the user the
concept of Person is central enough to appear on the first level of the web-portal's
navigation-menu. From the modeling perspective of KMOD a Person is a kind of
Organizational Entity.

Person
Template
slots:

none

Superclass: THING
Organizational Entity

Subclasses: Airbus Person
Non Airbus Person

Relation

This is the superclass of all relations that cannot be directly modeled as slots. (I. e. n-
ary relations with n > 2). This class is currently a convenience class (see above) that has
no formal meaning, nor does it appear in the navigation menu of the web portal.

52

Part 3: The KMOD Ontology

Future versions of the KMOD ontology may introduce a formal meaning and a
taxonomy of relations.

Relation
Template
slots:

none

Superclass: THING

Subclasses: Experience
Function Influence on Criterion

Knowledge Assessment Related Classes

Like Relation, this class only serves as a collecting point for its subclasses.

Knowledge Assessment Related Class
Template
slots:

none

Superclass: THING

Subclasses: Characteristic
KM Concern
KM Function
KM Practice

3.3.2 Direct subclasses of Knowledge Area
Structure

Structure is the superclass of all classes which represent an aircraft (Complete
Aircraft) or a part of an aircraft (Aircraft Parts). The instances of
Structure can be organized into a part-of hierarchy (1,3). Also, a Structure
may be specified by a Result (2).

53

Part 3: The KMOD Ontology

Structure
Template
slots:

(1) has direct sub-parts,
(2) inverse of details structural component

(Result)
(3) is direct sub-part of

Superclass: Knowledge Area

Subclasses: Aircraft Parts
Complete Aircraft

Process

A Process in KMOD represents any process which results in some kind of
document. (Thus, excluding processes like manufacturing an airplane.) A Process
can be part of a sequence of Processes (1,2), and can also be part of a hierarchy of
processes (3,4). Usually a Process is supported by Methods and Tools (5)
and renders some Result (6). The subclasses correspond to kinds of processes that
where identified by the KMOD team. Although the subclasses currently have no
formal meaning, they are useful for the web portal to group similar processes
together.

Process
Template
slots:

(1) directly follows,
(2) directly precedes,
(3) has direct sub-process,
(4) is direct sub-process of
(5) supporting methods & tools (Methods and

Tools)
(6) yields result (Result)

Superclass: Knowledge Area

Subclasses: Total Process
Development Process
Concept Design Process
Definition Process
Physical Test Process
Feasibility Process
Simulation & Calculation Process

54

Part 3: The KMOD Ontology

Results

A Result represents a result which can be documented. It may be the result of a
Process (5). It usually has impact on some Engineering Criterion (4), is
usually achieved by employing some Method and Tool (6), and can be part of a
hierarchy of Results (2,3). In addition, it may specify some part or parts of an
airplane or even a complete airplane (1).

Results
Template
slots:

(1) details structural component (Structure)
(2) has direct sub-result
(3) has direct super-result
(4) has impact on (Engineering Criteria)
(5) is result of (Process)
(6) method/tool used (Methods and Tools)

Superclass: Knowledge Area

Subclasses: Complex Result
Concept Result
Detailed Design Result
Physical Test Result
Simulation and Calculation Result

Methods and Tools40

The class Methods and Tools represents a hierarchy (4,5) of methods and tools
that are usually used for modeling some aspect of physics (3) or for supporting some
process (6). A Method and Tool may have a Result (1) and a certain level of
maturity (2).

40 The name of this is especially problematic. From modeling perspective a name like
“Method or Tool” would be more appropriate. But having the web portal in mind it makes
sense, because the user will select this for a list of all methods and tools.

55

Part 3: The KMOD Ontology

Methods and Tools
Template
slots:

(1) method maturity level (Method Maturity
Level Characteristic)

(2) more general method or tool
(3) more specific method or tool
(4) results in (Result)
(5) used for modeling (Physics)
(6) used to support process (Process)

Superclass: Knowledge Area

Subclasses: KM Initiatives
KM Tools

Engineering Criterion

An Engineering Criterion represents an aspect of an engineering solution,
like the optimum weight solution for the wings. It is usually influenced by a certain
Result (1), and may be part of a hierarchy of Engineering Criteria (2,3). E. g.
the overall optimum solution would have the above mentioned optimum weight
solution as one sub criterion.

Engineering Criterion
Template
slots:

(1) is influenced by (Result)
(2) sub criteria,
(3) super criteria

Superclass: Knowledge Area

Subclasses: none

3.3.3 KM Function, KM Concern, and KM Initiative

KM Function

A KM Function represents a knowledge related action, like sharing or reusing
knowledge. A KM Functions may be influenced by KM Concerns and/or KM
Initiatives (1).

56

Part 3: The KMOD Ontology

KM Function
Template
slots:

(1) influenced by these km concerns and
initiatives (KM Concerns, KM Initiatives)

Superclass: Knowledge Assessment Related Classes

Subclasses: none

KM Concern

KM Concern represents concerns that may have an impact on Airbus's KM efforts.
A concern in this sense could be an employment stop due to a budget cut, or the
problem of high personnel turn-over. A KM Concern has a certain importance (2)
may influence KM Functions (1) and may be influenced by KM Initiatives
(3).

Knowledge Assessment Related Class
Template
slots:

(1) impacted km functions (KM Functions)
(2) km concern importance (Importance Of

Concern Characteristic)
(3) suggested km initiatives (KM Initiatives)

Superclass: Knowledge Assessment Related Classes

Subclasses: none

KM Initiative

A KM Initiative represents a type of knowledge management effort, like
workshops (i. e. not one specific workshop but the notion of workshops for
knowledge sharing, reusing etc.). A KM Initiative will usually have some
impact on one or more KM Functions (1), and may be suggested for solving (or
at least positively influencing) certain KM Concerns (2).

57

Part 3: The KMOD Ontology

KM Initiative
Template
slots:

(1) impacted km functions (KM Functions)
(2) suggested for solving these km concerns

(KM Concerns)

Superclass: Methods and Tools

Subclasses: none

3.4 Representing knowledge with the KMOD ontology
—selected examples

The main classes of the KMOD ontology which have been introduced in the
previous section were used to represent statements that were extracted from the
interview results document and other sources. A formal representation of a
statement was created by identifying central concepts of that statement which could
be “mapped” to corresponding classes or relations of the KMOD ontology. This
process of mapping usually meant creating a new instance of a class. E. g. to
represent a statement involving an A310 airplane, we would create an instance of
Complete Aircraft (a subclass of Structure) called A310.

It must be pointed out that the A310 is not a single airplane but stands for a whole
class of airplanes. Would it not therefore make sense to represent the concept of an
A310 as a class instead of an instance? In KMOD the instance A310 represents the
class of A310 airplanes, because the department for which the KMOD ontology was
developed is not concerned with individual airplanes but with classes of airplanes.

This section gives some examples of how the KMOD ontology can be used to create
formal representation of informal descriptions.

3.4.1 Syntax of the representations used

To illustrate the examples in this section, parts of the KMOD ontology are
represented by using graphs. The graphs consist of rounded rectangles and arrows
connecting the rectangles. The rectangles represent instances and the arrows
represent own slots of the instances.

58

Part 3: The KMOD Ontology

Figure 15 shows two instances, “A” and “B”, and an own slot of A labeled “slot of
A”. The slot value of “slot of A” is “B”. Another way to state this is to say “A and B
are connected via slot of A”. The classes are given in square brackets below the
instance names. Note that only slots are displayed that are relevant in the current
context and that both instances may have further own slots which are not shown.

The Flora-2 rules, however, cannot be adequately represented using the simple
graphs above. Thus the rules will be given in the original Flora-2 syntax. The
relevant concepts of the Flora-2 syntax are summarized below:

• Words starting with a lowercase letter and words in 'single quotes' are
literals.

• Words starting with an Uppercase letter are variables.

• f1::f2 defines

• that the frame f1 is a subtype (subclass) of frame f2.

• i:f[s1->>{v1, v2, ..., vn}] defines

• an instance i of type f,

• a slot s1 having the values v1 through vn.

• Rules in FLora-2 are stated as inverse implications:
statementB :- statementA defines

• a rule that makes statementB true if statementA is true.

• A sample rule:

X[lastname->>SNAME] :- X[surname->>SNAME]

defines a rule that for all frames X that have a slot called
surname, will “add” a slot called lastname to that frame with
lastname having the same value as surname.

• Lines starting with “//” are comments.

59

Figure 15
Graph representation of two instances connected via a slot.

A slot of A

[Class of A]
B

[Class of B]

Part 3: The KMOD Ontology

3.4.2 Representing relations

A relation (or predicate) can be defined as a function that maps its arguments to the
truth values true or false. In Protégé relations have to be defined extensionally, i. e. one
must list all possible combinations of arguments for which the relation holds (is
true). Using Flora-2 offered the additional possibility of defining relations
intensionally, by defining rules that state the conditions under which the relation
holds.

Binary relations between instances

For binary relations there were two possibilities: to model them using either first-
class objects or using slots. It was decided to model them as slots, because it is
straight-forward to do so using Protégé's inverse slots41.

A binary relation is thus represented by one or two slots, each connected to a class.
Two slots are only used when the relation must be navigable in both directions in
the web portal. E. g. the direct-part-of relation for Structure is implemented
using two slots, both attached to Structure itself: is direct sub-part of
(Structure) and has direct sub-parts (Structure). Figure 16

41 A list of inverse slots can be found in Appendix A.

If two slots are defined as inverse slots (or one slot as an inverse of itself) and a value is
assigned to one of them, then Protégé will automatically add the correct value to the other.
E. g. the has direct sub-part and is direct sub-part of slots are defined as
inverse slots. Adding an instance A to the has direct sub-part slot of B will
automatically add B to A's is direct sub-part of slot as well.
Note that this will only work, if the inverse slots are defined before assigning the values.
Changing existing slots with already assigned values to inverse slots will not have this
effect.

60

Figure 16
The binary relation “direct-part-of” is represented using two
inverse slots “has direct sub-part” and “is direct sub-part of”.

A310

Left wing of A310 Right wing of A310

is direct sub-part of is direct sub-part of

has direct
sub-part has direct

sub-part

[Structure]

[Structure] [Structure]

Part 3: The KMOD Ontology

illustrates how the direct-part-of relation between an A310 (a specific type of
aircraft) and its wings is modeled.42 For brevity, subsequent illustrations will only
show one of the inverse slots of the binary relation.

Another relation, the part-of relation, is defined in terms of the direct-part-of
relation: Using Flora-2 rules it was possible to define the part-of relation as the
transitive closure of the direct-part-of relation:

// All direct sub-parts are also sub-parts:
A['has sub-parts'->>B] :-

A['has direct sub-parts'->>B].43

This defines a new slot has sub-parts as containing all instances which the
existing has direct sub-parts contains. A second rule makes sure, whenever
a A has a sub-part B, and B has a sub-part C, then A also has C as a sub-part:

// Transitive closure:
A['has sub-parts'->>C] :-

A['has direct sub-parts'->>B],
B['has sub-parts'->>C].

Without Flora-2 the part-of relation would have had to be modeled the same way as
the direct-part-of relation. The slot values would need to be filled in by hand which
would be very time-consuming and error-prone.

A similar approach was used to define a relation called knows about. The Protégé
model only contained assertions about which knowledge areas a person knows
something. Using Flora-2 the relation was extended to Organizational Units:
A rule was introduced which asserts that an Organizational Unit knows
about the same knowledge areas which all its members know about, and that an
Organizational Unit also knows about everything that all its sub-units know
about.

42 Note that the instances are actually instances of subclasses of Structure. The purpose of
the illustration is to show the modeling of a binary relation.

43 Constraints are omitted here for better readability. For a better run time performance of the
rules it is useful to add type-constraints for A, in this case restricting A to subclasses of
Structure.

61

Part 3: The KMOD Ontology

n-ary relations between instances

The n-ary relations with n > 2 are modeled as first-class objects. Using first-class
objects means creating different classes for different kind of relations, one class for
each kind. These classes have a slot for each partner in the relation.

This approach is used to model people's experience, which is necessary in order to
represent a certain level of experience of a person—as opposed to representing that
the person knows something (without qualifying how well she knows it). For
example:

(1) John has experience in general aerodynamics.

(2) Mary has long term experience as an expert in general aerodynamics.

Statement (1) could be modeled by a slot knows attached to the class Persons.
Then John could be related to General Aerodynamics by using this slot. If
the same slot would be used for (2), then the extra information about Mary's
expertise will be lost. Therefore, a new class Experience was created with three
slots level of expertise, field of expertise, and experience
time. The class together with these three slots can be used to qualify a person's
experience in more details than a simple slot. To represent statement (2) one would
create an instance of Experience (labeled Long term expert in General
Aerodynamics in figure 17) and fill its slot with the instances Long Term,
Expert, and 3D-Navier-Stokes. This instance of Experience would then be
added to the has experience slot of Mary.

62

Figure 17
"Mary has long term experience as an expert in general aerodynamics."

Mary Long term

Expert

experience
time

field of
expertise

Long term expert
in General Aerodynamics

level of expertise

has
experience

[Experience]

[Person] [1]

[2]

[1] = [Time of Experience]
[2] = [Experience Level Characteristic]

General Aerodynamics
[Knowledge Area]

Part 3: The KMOD Ontology

To represent statement (1), one would create another instance of Experience.
While the field of expertise slot would be filled with the same instance of
General Aerodynamics, the other two slots would be left blank. This instance of
Experience would then be added to the has experience slot of John.

So far, instances of Experience are only used to model the experience that a
person has of a certain knowledge area. Because the goal of the KMOD ontology was
the assessment of knowledge, but not primarily the knowledge a certain person has,
a related notion of experience was also modeled using the same class Experience.
This notion of experience represents a kind of precondition44, in the sense that
knowledge in one area is a necessary precondition to gain knowledge in some other
area. Thus, Experience can represent a person's experience as well as a
precondition for a knowledge area. The two cases are shown in figures 17 and 18: An
instance of Experience that represents a person's experience (figure 17 on the
previous page). The same instance additionally represents the necessary experience
(the precondition) for a knowledge area in figure 18.

Note that the same Experience instance may be assigned to any number of
Knowledge Areas and Persons. Thus, an instance of Experience does not
represent an individual's knowledge (i. e. not “John's long term expertise in
aerodynamics”) but instead a notion of a more general kind (“Long term expertise in

44 See the description of the conceptual view underlying KMOD, page 43, for the concept of
precondition of a knowledge area.

63

Figure 18
Experience representing Mary's experience and a precondition:

“Being a long term expert in general aerodynamics is a precondition for 3D-Navier-Stokes.”

Long term

Expert

experience
time

field of
expertise

General Aerodynamics

Long term experience in
General Aerodynamics

level of expertise

3D-Navier-Stokes

has
precondition

[Experience]

[Knowledge Area] [Knowledge Area]

[1]

[2]

[1] = [Time of Experience]
[2] = [Experience Level Characteristic]

Mary

has
experience

[Person]

Part 3: The KMOD Ontology

aerodynamics”). The notion of individual knowledge is represented by assigning an
Experience instance to a Person. The same is true when using an instance of
Experience to represent the precondition of a knowledge area.

As a result, when a Person's experience changes (or when it is determined that
the necessary experience for some knowledge area changes) and this different
experience must be represented, then, instead of changing the properties of the
assigned experience instance (e. g. replacing the slot-value Long Term with some
other instance of Time of Experience), the whole Experience instance
should be replaced with another instance. Otherwise, all Persons and
Knowledge Areas which were assigned the original Experience would now
be connected to the changed instance of Experience, which is probably not
intended.

3.4.3 Representing knowledge assessment criteria

The idea of the KMOD ontology was to enable the assessment of the Airbus
department's knowledge. Assessment of a knowledge area is achieved by creating an
instance of a certain class (a subclass of KM Characteristic) and assigning it to a
certain slot of the knowledge area.

A total number of 13 characteristics were identified for the purpose of assessment,
which are all represented by subclasses of KM Characteristic. Instances of
eleven of the 13 characteristics are used directly as slot-values for slots of the
Knowledge Area class (cf. the property list of Knowledge Area, slots 1, 2, 3, 5,
6, 7, 12, 13, 14, 15, 17). The instances of the two remaining classes are used as a slot-
value for a slot of the Method and Tool class (the slot method maturity
level), and for the slot-value of a slot of the Experience class (the slot level
of experience).

64

Figure 19
Assessment example of 3D-Navier-Stokes. Instances of

KM Characteristics are marked gray.

Long term

Expert

experience
time

field of
expertise

General Aerodynamics

Long term experience in
General Aerodynamics

level of expertise

3D-Navier-Stokes

has
precondition

[Experience]

[Method and Tool]
[Knowledge Area]

[1]

[2]

[1] = [Time of Experience]
[2] = [Experience Level Characteristic]
[3] = [Method Maturity Level Characteristic]
[4] = [Ease of Formalization Characteristic]
[5] = [Applicability Characteristic]

method
maturity

level

Still under development
[3]

ease of
formalization

Not easily formalized
[4]

applicability

Routine knowledge
[5]

Part 3: The KMOD Ontology

A (fictitious) example assessment of the instance 3D-Navier-Stokes is shown in
figure 19 (on the previous page). The instances of KM Characteristics are
marked with a gray background.

The example represents the following statement:

3D-Navier-Stokes is a method or tool, which is still under development. Knowledge
about 3D-Navier-Stokes is routine knowledge that is not easily formalized. A
precondition to having knowledge about 3D-Navier-Stokes is long term expertise in
the area of general aerodynamics.

The same instance of a KM Characteristic may be assigned to more than one
Knowledge Area, indicating that these knowledge areas share the same value of a
certain assessment characteristic. In the example above, the characteristic Not
easily formalized may be assigned to any number of Knowledge Areas,
indicating that all these knowledge areas cannot easily be formalized.

65

Part 4

Evaluation

Part 4 is an evaluation of the results of the
KMOD project. This includes an evaluation of
the KMOD ontology itself, the approach, and
the tools which were used for the creation.

The chapter includes a number of suggestions
for possible improvements in these three
areas.

Part 4: Evaluation

4 Part 4: Evaluation
The KMOD ontology has not yet been presented to “real” users in a production or
demonstration system. Therefore, an evaluation of the ontology can only commence
from a theoretical point of view, although the practical evaluation of users remains
the final test of its adequacy.

4.1 Evaluation of the KMOD ontology

The KMOD ontology is an ontology for knowledge sharing between humans and as
such it is primarily a situated ontology. It aims to provide a common means for the
assessment of Airbus' knowledge, enabling people from different departments
within Airbus to access these assessments and communicate about them.

Thus, an evaluation of the KMOD ontology needs to take into account the enabling-
characteristics for boundary objects which were introduced in section 1.4 “Situated
ontologies in communities of practice”: accommodation, modularity, abstraction,
and standardization.

Accommodation describes the ability to adapt to the different needs of different
communities. In a sense, the KMOD ontology accommodates to the needs of the
ontology developers through Protégé, and to the needs of users through the web
portal. How it accommodates to the needs of different users (managers, new
employees etc.) remains to be seen when it is put into use.

Modularity means that the ontology should contain different parts which address
different groups of people. KMOD's distinction of a domain ontology part and a
knowledge assessment ontology part provides a very simple kind of modularity.
Exchanging the domain ontology part may offer a basic means to address a different
group of users. The knowledge assessment ontology part can be seen as uniting the
different domain ontologies under a common roof.

Abstraction means that the ontology should contain only relevant details. The
KMOD ontology's level of detail was decided on the basis of the interview result
documents. Again, it remains to be seen when the ontology is put into use whether
the level of detail serves the purpose of the ontology.

Standardization means to provide an explicit and uniform way of use. The actual
way of use of the KMOD ontology will be determined by the web portal which will
provide the user interface. The KMOD ontology itself currently does not provide an
explicit description of how it should be used. An informal description of the
concepts in the ontology could be a first step in this direction.

The KMOD ontology exhibits some of the characteristics of a potential boundary
object. Whether this is enough to actually become part of the daily practice of
different communities will only become apparent when it is put into use. In any
case, there is room for improvement with respect to all of the aforementioned
characteristics. In particular, the introduction of informal descriptions of the

67

Part 4: Evaluation

concepts offers a chance to enhance standardization without the need to change the
formal parts of the ontology.

Recalling the problems of imposing a standard vocabulary encountered by Uschold
and Jasper (2003) in the Boeing project, such informal descriptions might also be
used to allow different communities to map their local terms to the global terms of
the ontology, which aids accommodation. Alternatively, synonyms could be added
by introducing a new slot synonyms of type String for every concept. This slot
would contain a list of synonyms for a certain concept, which would require only
minimal changes to the ontology. Other, more complex solutions are possible but
require more complex changes to the ontology.45

Another improvement pertains to the aspect of modularity. Currently, the KMOD
ontology's class-hierarchy serves two purposes: model the domain and serve as the
basis for navigation in the web portal. This led to certain peculiarities, like the class
Person appearing in two places of the hierarchy. A possible separation of these
two different demands would consist of the actual modeling part (the ontology) and
an explicit mapping part, that would map concepts from the ontology to navigation
elements in the web portal. Making these possibly conflicting demands explicit
results in a heightened awareness of them and may result in a more flexible and
overall more adequate design.

Though being primarily a situated ontology, the formal aspects of the KMOD
ontology should not be neglected. Gruber suggests a number of design criteria
which may be used to evaluate a formal ontology [Gruber 1993], which have been
introduced in section 1.5 “Computer-implemented ontologies”.

Clarity requires that the concepts of an ontology should be rigorously defined
whenever possible and be documented by an informal description. The concepts of
the KMOD ontology are neither rigorously defined nor do they provide an informal
definition. They were developed from the interview results document. The results
document together with this thesis may be viewed as a first step towards an
informal description.

Coherence requires, that both the formal definitions and informal descriptions of the
concepts will not lead to contradictions. To date, contradictions have not occurred in
the KMOD ontology. Still, the point is that the KMOD ontology does in no way
constrain the creation of such instances.46 Therefore, the possibility of contradictions
cannot be excluded for certain.

45 A more complex solution would be, for example, to use a slot of type Instance or even
create a new class that serves as a synonym-relation (similar to Experience).

46 One reason for this is that such constraints would be difficult, in same cases maybe
impossible to implement. Because only ontology experts are allowed to manipulate the
ontology and create instances, constraints were avoided whenever possible.

68

Part 4: Evaluation

Extendibility requires that new kinds of use should be anticipated and new concepts
may be added as specializations without the need to change existing concepts. The
KMOD ontology facilitates new kinds of using the ontology by distinguishing
between concepts of the domain and concepts for knowledge assessment. It is
expected that the domain concepts may be specialized or even replaced without a
need to change the concepts for knowledge assessment and vice versa.

Minimal encoding bias occurs when design decisions are made for reasons of
convenience or notation. As has been mentioned before, in the KMOD ontology this
is the case with binary relations, which are represented as slots. These slots are
attached to classes, thus, making the relations (slot) part of the definition of the class.
This was done because treating relations as slots is easier to handle both in Protégé
and in the web portal. Detaching the relations and representing them as
independent entities might have been more faithful to the underlying conceptual
view. For n-ary relations (with n > 2) this has been done (e. g. Experience),
because using simple slots was not possible in these cases.

Minimal ontological commitment requires the ontology to make as few claims
about the world as possible to support the given application. The KMOD ontology
adheres to this principle by constraining the slot-values as little as possible. Thus,
slots will usually allow more then one instance, even in cases where this does not
seem necessary. For example, one may assume that something can only be a direct
sub-part of a single super-structure. The KMOD ontology does not impose such a
constraint. It allows an instance to be part of more than one super-structure.

Another example: One could also create an instance of Experience with the slot-
values Long Term and Beginner, which may be understood as someone being
a “long term beginner” in some field of expertise. The term “Beginner” implies that
the person has learned the subject only recently, which in a sense contradicts the
meaning of the phrase “long term”.47 Yet, this lack of constraint is a an example of
minimal ontological commitment of the KMOD ontology.

If changes to the ontology are required, like in the case separating the
representational and navigational concerns, the difficulty of the change should be
weighed against the possible benefits. The evaluation of both situated and formal
aspects suggests that the creation of informal description will be beneficial for users
and ontology developers alike, while not requiring changes to the actual ontology48.
Such descriptions should state the conceptual view of each concept and its use in the
ontology. They would provide a significant improvement to the current ontology.

47 This is of course not a logical contradiction, but the seems to disagree with one's intuition,
almost like an oxymoron. Giving this instance the benefit of the doubt, one might say that
“beginner” is probably a misnomer and should rather be named “basic knowledge or
experience”.

48 The standard slot Documentation may be used for this purpose.

69

Part 4: Evaluation

4.2 Evaluation of our approach

The development of the KMOD ontology was a central activity in the KMOD project.
The KMOD project itself was managed using a standard method for projects at
Airbus. While the overall project was guided by a method, the development of the
KMOD ontology was not.

Our approach to the development of the ontology was mainly based on the other
team member's previous experience from similar projects. The idea was to first
conduct the interviews and then create from them a series of increasingly complex
versions of the ontology, which should as a final step be deployed in a system for
demonstration and testing purposes. The anticipated time frame for this whole
process was approximately one year.

My work for the project ended before the KMOD ontology was actually presented to
any users. At the end of this period the possible need for more feedback from future
users and domain experts was discussed. This was after more then six month of
ontology development.

Here, a problem of the chosen approach becomes apparent. It was assumed that the
KMOD team will be able to build an adequate ontology solely based on the
interview results. Thus, no measures were taken to ensure frequent evaluation and
feedback from the domain experts (which are not part of the KMOD team). The
interviews were the only means of letting the future users (and domain experts) take
part in the development process.

In application-oriented software development, prototyping is a way to ensure the
incorporation of user feedback into the development process [Züllighoven 2005].
Three kinds of prototyping can be distinguished based on their purpose:

exploratory, evolutionary, and
experimental prototyping [Floyd
19984]. The right kind of approach
must be chosen based on the
specific project and the stage of
development of the ontology.

Evolutionary prototyping would
have been well suited for the
development of the successive
versions of the KMOD ontology.
Figure 20 shows an abstract
illustration of the prototyping
process. Based on the interviews
(analyze) an initial version may be
build (construct/model). The
versions would serve as the
prototypes and would be criticized

70

Figure 20
Recurring steps in the development of a prototype

(based on [Floyd and Oberquelle 2004])

analyze

evaluate

construct /
model

Part 4: Evaluation

by the domain experts49 (evaluate). This feedback is analyzed to build the next
version of the ontology.

The time interval for a complete cycle of analysis, construction and evaluation
depends on the specific project. I developed the KMOD ontology within six month,
not including the interviews. If we had used a prototyping approach, three complete
cycles seem to be a realistic estimate in retrospect.

Two factors must be taken into account when considering prototyping for ontology
development:

• participation of domain experts

• availability of evaluation criteria

These are critical for the success of the approach. The participation of domain
experts is of course crucial for the process. If they do not participate there is no
improvement over the original approach used for the KMOD ontology.

The evaluation criteria are important for both domain experts and ontology
developers to judge if the development is going in the right direction. These criteria
should be directed towards the future use to ensure that the ontology is adequate for
the intended purpose. The criteria mentioned in the previous section do not meet
these requirements.

Competency questions ([Gruninger and Fox 1994]) are well suited to evaluate the
adequacy of an ontology for a particular purpose:

“[Competency questions] serve as benchmarks for the development of
ontologies [...]. These questions not only characterize existing ontologies but
also drive the development of new ontologies that are required to solve the
competency questions.”

[Gruninger and Fox 1994, 1]

Competency questions are a set of questions that the future ontology should be able
to answer. Also, they can be used to identify relevant concepts. Thus, competency
questions can guide the ontology developers, while at the same time providing
criteria to evaluate the fitness for the intended purpose. As an additional benefit
competency questions may also serve as a starting point for the creation of informal
descriptions.

Competency questions could also counter the negative effect which the early use of a
tool like Protégé may have. In KMOD the effect was that we restricted our way of
thinking about the ontology to constructs which Protégé would easily support. This
happened after we switched from sketching the ontology by the informal documents
to using Protégé. Gradually, we imposed Protégé's technological restrictions on the
design of the ontology.

49 In the KMOD project the users regarded as the domain experts.

71

Part 4: Evaluation

Another approach from software development, the creation of a glossary, might have
also been fruitfully used for the development of the KMOD ontology. A glossary is
“a dictionary of terms relevant in an application domain.” ([Züllighoven 2005, 475]).
Its purpose is the establishment and documentation of terms, that the project team
agreed upon. It is important that the terms in the glossary should come from the
application domain language and not from the developers [Züllighoven 2005, 477].
A list of terms can be compiled from the interviews, the competency questions, and
from discussions with the domain experts.

Besides serving as the central repository for the common project language, the
glossary may also be used to supply informal descriptions of ontology concepts.

Glossary and competency questions together form a solid basis for the creation of
informal description that are firmly grounded in the practice of domain experts.
Both glossary and competency questions can guide the development process. Using
a prototyping approach ensures frequent feedback of domain experts about the
adequacy of the ontology. Competency questions can be used to evaluate the
progress.

4.3 Evaluation of the tools50

Protégé was the main tool for the creation of the KMOD ontology. It proofed flexible
enough to accommodate the different demands of the KMOD ontology, specifically
the combination of modeling a domain and building a user interface based on that
domain.

Some problems we encountered when using Protégé can be easily solved. E. g. the
standard slot Name must contain a unique value for every frame. This prevents the
creation of classes, instances etc. with the same name. It can be solved by adding a
new slot which will not have this restriction, e. g. KMOD Name, to the default meta-
class STANDARD-CLASS.

There are some features that Protégé does not offer but which would have been
helpful for the creation of the KMOD ontology:

1. support for refactoring

2. consistency check of inverse slot values51

3. a list of “favorite classes” or “bookmarks” that can be quickly accessed

4. effective visualization of the ontology

The features (1) and (2) would have been helpful to ensure that changes to existing
concepts will not result in inconsistencies. E. g. changing the type of a template slot

50 I will concentrate on Protégé and the integration of Flora-2. I will not evaluate Tomcat/JSP
because it was not used to create the ontology, but is only used to create the web portal.

51 When an existing slot is made inverse, Protégé will not ensure that instances that have this
slot as an own slot contain the correct values. This has to be done by hand.

72

Part 4: Evaluation

of some class may result in inconsistencies, if instances of that class exist. An
instance of the class may have a slot-value in the changed slot that is not of the
(newly changed) type. In Protégé a slot with an incorrect value is marked with a red
border. That is the only way to identify the mistake. Therefore, after changing the
slot type one has to manually check every instance for erroneous slot value. A
refactoring feature could warn beforehand that a certain change will result in such
inconsistencies and list the effected frames.

A list of “favorite classes” or “bookmarks” would have made the convenience
classes (e. g. the class Knowledge Related Classes) dispensable. Recall that
convenience classes served as a collection point for quick access to related classes.
Making a class a “favorite class” should add that class to a special list which can be
accessed quickly from anywhere in Protégé. This should in no way effect the actual
class-hierarchy. This feature would be helpful to quickly navigate to important
classes without the need to artificially change the class-hierarchy.

In the KMOD project, graph representations of the Protégé model were drawn by
hand. The possibility to automatically generate simple graphs52 from a Protégé
model would enable effective communication with domain experts.

One feature we did not miss was the possibility to handle competency questions in
an effective manner. Such feature could be used to support the evaluation phases of
a prototyping approach mentioned above.53

The integration of Flora-2 into Protégé via the OntoQuery-plug-in is still very basic.
A syntax error in an axiom or query will be passed to Flora-2 and will result in an
empty search result. Thus, one always has to check the plug-in's debug-output to
verify that an empty search is correct or if it is the result of a syntax error. It would
be an improvement if the plug-in reports these syntax errors instead.

Other improvements of Flora-2 integration into Protégé, e. g. making the results of
the axioms accessible from the Protégé user interface, would be much more difficult
to implement.

52 Some graph generating plug-ins were available but the resulting graphs were even more
complex then the Protégé user interface and therefore not suitable for effective
communication.

53 A commercial ontology editor that integrates competency questions is, for example,
OntoEdit (http://www.ontoprise.com).

73

Summary and outlook

5 Summary and outlook
In this thesis I have described the KMOD project, the KMOD ontology which I
helped to develop during my participation in the project, and the tools we used.

The first part introduced three meanings of the term ontology: Ontology as a
philosophical discipline, an ontology as the goal of Ontology, and ontology in
informatics as a conceptual artifact. Based on the distinction of knowledge sharing
between computer agents on the one hand, and knowledge sharing between humans
on the other, the notions of formal and situated ontologies were distinguished.

In the second part the KMOD project and the tools we used were described. This
included the description of related work, which had been considered for reuse in the
project, and an introduction to the Protégé meta-model. The chapter ends with a
characterization of the ontology's development process as a series of increasingly
complex ontology versions. This led over to the description of the KMOD ontology,
which is the subject of part three.

Part three presents the KMOD ontology as a situated ontology for knowledge
sharing between humans. It begins with an introduction to the underlying
conceptual view, followed by an account of the central concepts of KMOD ontology.

Finally, in part four the KMOD ontology, our approach, and the tools were
evaluated.

The KMOD ontology was evaluated with respect to the enabling-characteristics of
boundary-objects and the criteria suggested by Gruber (1993). It was concluded that
the adoption of informal descriptions will significantly improve the ontology's level
of standardization and clarity.

A prototyping approach was suggested as a systematic and controlled alternative to
the way we created the ontology as a series of ontology versions. This would also
ensure early and frequent feedback from domain experts. To support the evaluation
of the ontology during its development, the use of competency questions and the
creation of a glossary was suggested. The use of a project glossary was also
identified as a means to creating informal descriptions for ontology concepts.

The evaluation of Protégé pointed to a number of possible improvements. Especially
enhancements in the area of effective visualization of ontologies and facilities for the
integration of competency questions would be needed to support a prototyping
approach for ontology development.

Outlook

The KMOD project aimed at the creation of an ontology-based system for
knowledge sharing between humans. For this purpose the KMOD ontology was
developed. Future users will need to judge whether this original goal was achieved.

Ontologies are expected to solve many problems in the field of automated
knowledge sharing between both humans and software agents. Yet this subject
seems to be treated as pertaining mainly to knowledge sharing between software

74

Summary and outlook

agents while neglecting what I have called the situatedness of ontologies. Future
work on ontologies in informatics should further clarify and investigate the notion
of situated ontologies as a means for knowledge sharing and reuse between humans.

Both application-oriented software development and the study of boundary objects
seem a good starting point to learn how situated ontologies can be developed and
how they may support knowledge sharing and reuse between humans. A promising
approach may be the adoption of existing classifications for the creation of
ontologies. Empirical evidence is needed to show if and how application-oriented
software development methods can be successfully used for the creation of situated
ontologies.

Future work could also investigate how tools may adequately support the creation
of situated ontologies. Effective visualization is not well supported by existing tools.
I believe that this is a key factor to support the communication between ontology
developers, users, and domain experts.

75

Bibliography

6 Bibliography
[Berners-Lee et al. 2001]

Berners-Lee, T.; Hendler, J.; Lassila, O.: The Semantic Web, in: Scientific
American, May 2001.
Available at (accessed: 1/10/2004):
http://www.sciam.com/article.cfm?articleID=00048144-
10D2-1C70-84A9809EC588EF21

[Bowker and Star 1999]
Bowker, G. C.; Star, S. L.: Sorting things out: classification and its consequences,
The MIT press, Cambridge, Massachusetts, 1999.

[Clancey 1993]
Clancey, W. J.: The knowledge level reinterpreted: Modeling socio-technical
systems, in: Ford, K. M.; Bradshaw, J. M. (editors): Knowledge Acquisition as
Modeling, John Wiley & Sons: New York, 1993, pp. 33-50.
Available at (accessed: 02/06/2005):
http://cogprints.org/312/00/125.htm

[Curd & Cover 1998]
Curd, M.; Cover, J. A.: Philosophy of Science: The Central Issues, Norton &
Company, New York, USA, 1998.

[Domingue et al. 2001]
Domingue, J; Motta.E.; Buckingham Shum, S.; Vargas-Vera, M.; Kalfoglou,
Y.; Farnes, N.: Supporting Ontology Driven Document Enrichment within
Communities of Practice, in: Proceedings of the First International Conference
on Knowledge Capture, Victoria, British Columbia, Canada, October 21-23;
ACM Press, New York, 2001, pp. 30-37.
Available at (accessed 12/05/2004):
http://kmi.open.ac.uk/projects/akt/kcap01_john_final.pdf

[Flick 1995]
Flick, U.: Qualitative Forschung: Theorie, Methoden, Anwendung in Phsychologie
und Sozialwissenschaften, Rowohlt Verlag, Hamburg,Germany, 1995.

[Floyd 1984]
Floyd, C.: A systematic look at prototyping, in: Budde, R.; Kuhlenkamp, K.;
Mathiassen, L.; Züllighoven, H.: Approaches to Prototyping, Springer-
Verlag, Berlin, 1984, 1-18.

76

Bibliography

[Floyd, Reisin and Schmidt 1989]
Floyd, C.; Reisin, F.-M.; Schmidt, G.; STEPS to Software Development with
Users, in: Ghezzi, C.; McDermid, J. A. (editors): ESEC '89, Lecture Notes in
Computer Science no. 387, Springer, Berlin / Heidelberg, Germany, 1989,
pp. 48-64.

[Floyd and Oberquelle 2004]
Floyd, C.; Oberquelle, H.: Lecture notes for the 2004/05 lecture
“Softwaretechnik und Softwareergonomie” at the University of Hamburg.
Available at (accessed: 01/15/2005):
http://swt-www.informatik.uni-hamburg.de/attachments/
LVTermine/WS04-05_VL-06_STE_Prototyping.pdf

[Fox and Fadel 1993]
Fox, M.; Chionglo, J. F.; Fadel, F. G.: A Common Sense Model of the Enterprise,
in: Proceedings of the 2nd Industrial Engineering Research Conference,
Norcross, Georgia; Institute for Industrial Engineers, 1993, pp. 425-429.
Available at (accessed: 12/4/2003):
http://www.eil.utoronto.ca/enterprise-
modelling/papers/fox-ierc93.pdf

[Genesereth and Nilsson 1987]
Genesereth, M. R.; Nilsson, N. J. : Logical Foundation of Artificial Intelligence,
Morgan Kaufmann, Los Altos, California, 1987.

[Guarino 1995]
Guarino, N.: Formal Ontology, Conceptual Analysis and Knowledge
Representation, in: Guarino, N.; Poli, R. (editors): International Journal of
Human and Computer Studies, Special issue on Formal Ontology,
Conceptual Analysis and Knowledge Representation, vol. 43, no. 5/6, 1995,
pp. 625-640.

[Guarino 1997]
Guarino, N.: Understanding, building, and using ontologies, International
Journal of Human and Computer Studies 46, 1997, pp. 293-310.

[Guarino 1998]
Guarino, N.: Formal Ontology in Information Systems, in: Guarino, N. (editor):
Formal Ontology in Information Systems 1998 (Proceedings), IOS Press,
Amsterdam, The Netherlands, 1998.

77

Bibliography

[Gruber 1993]
Gruber, T. R.: Towards Principles for the Design of Ontologies Used for
Knowledge Sharing, in: Guarino, Nicola; Poli, Roberto (editors): Formal
Ontology in Conceptual Analysis and Knowledge Representation, Kluwer
Academic Publishing, 1993, pp. 907-928.

[Gruninger and Fox 1994]
Gruninger, M.; Fox, M. S.: The Role of Competency Questions in Enterprise
Engineering, in: Proceedings of the IFIP WG5.7 Workshop on Benchmarking-
Theory and Practice, Trondheim, Norway, 1994.
Available at (accessed: 11/21/2004):
http://www.eil.utoronto.ca/enterprise-
modelling/papers/benchIFIP94.pdf

[Hobbs 1985]
Hobbs, J. R.: Ontological Promiscuity, Proceedings of the 23rd conference on
Association for Computational Linguistics, Association of Computer
Linguistics, Morristown, New Jersey, 1985, pp. 60-69.

[Maedche and Staab 2001]
Maedche, A.; Staab, S.: Ontology Learning for the Semantic Web, in: IEEE
Intelligent Systems, volume 16, no. 2, 2001, pp. 72-79.

[Mahesh and Nirenburg 1995]
Mahesh, K.; Nirenburg, S.: A Situated Ontology for Practical NLP, in
Proceedings of the Workshop on Basic Ontological Issues in Knowledge
Sharing, International Joint Conference on Artificial Intelligence (IJCAI-95),
Aug. 19-20, Montreal, Canada, 1995.

[Noy, Fergersen and Musen 2000]
Noy, N. F.; Fergerson, R. W.; Musen, M. A.: The knowledge model of Protege-
2000: Combining interoperability and flexibility, in: Dieng, R.; Corby, O.
(editors): Knowledge Engineering and Knowledge Management. Methods,
Models, and Tools: Proceedings of 12th International Conference, EKAW
2000, Juan-les-Pins, France, October 2-6, Springer-Verlag, Berlin, Germany,
2000.
Available at (accessed 12/12/2004):
http://www-smi.stanford.edu/pubs/SMI_Reports/SMI-2000-
0830.pdf

[Noy and McGuinness 2001]
Noy, N. F., McGuinness. D. L.: Ontology Development 101: A Guide to Creating
Your First Ontology, Stanford Knowledge Systems Laboratory Technical
Report KSL-01-05, University of Stanford, California, March 2001.

78

Bibliography

[Nygaard 1986]
Nygaard, K.: Program Development as a Social Activity, in: Kugler, H.-J.
(editor): Information Processing 86. Proceedings of the 10th IFIP World
Computer Congress '86 Dublin, Elsevier Science Publishers, Amsterdam,
The Netherlands, 1986, pp. 189-198.

[Oppermann, Schnurr and Studer 2001]
Oppermann, H.; Schnurr, H.-P.; Studer, R.: Die Bedeutung von Ontologien für
das Wissensmanagement, in: wissensmanagement 6, 2001, pp. 33-36.

[Prechtl and Burkard 1996]
Prechtl, P.; Burkard, F.-P. (editors): Metzler Philosophie Lexikon, Verlag J. B.
Metzler, Stuttgart, Germany, 1996.

[Smith and Welty 2001]
Smith, B.; Welty, C. (editors): 2nd International Conference on Formal Ontology
in Information Systems: FOIS 2001, Ogunquit, Maine; October 17-19, 2001;
ACM Press, New York, 2001.

[Sowa 2000]
Sowa, J. F.: Knowledge Representation: logical, philosophical, and computational
foundations, Brooks / Cole; Pacific Grove, California, 2000.

[Staab 2002]
Staab, Steffen: Wissensmanagement mit Ontologien und Metadaten, in:
Informatik Spektrum, Springer-Verlag, Vol. 25, No. 3, 2002, pp. 124-209.

[Star 1989]
Star, S. L.: The Structure of Ill-Structured Solutions: Boundary Objects and
Heterogeneous Distributed Problem Solving, in: Gasser, L.; Huhns, M. (editors):
Distributed Artificial Intelligence, Volume 2, Pitman / Morgan Kaufmann
Publishers, London, UK, 1989.

[Ukena 2003]
Ukena, S.: Ontologieansätze in Internet-basierten IT-Systemen am Beispiel der
elektronischen Verwaltung, Studienarbeit, University of Hamburg, Germany,
2003.
Available at (accessed: 12/12/2004):
http://swt-www.informatik.uni-
hamburg.de/publications/files/Stud/Stefan%20Ukena%20-%
20Ontologieansaetze.pdf

79

Bibliography

[Uschold et al. 1998]
Uschold, M.; Kind, M.; Moralee, S.; Zorgios, Y.: The Enterprise Ontology, in:
Uschold, M.; Austin, T. (editors): The Knowledge Engineering Review, Vol.
13, Special Issue on Putting Ontologies to Use, 1998.
Available at (accessed: 10/20/2003):
http://www.aiai.ed.ac.uk/project/pub/documents/1998/98-
ker-ent-ontology.ps

[Uschold and Jasper 2003]
Uschold, M.; Jasper, R.: Enabling Task-Centered Knowledge Support through
Semantic Markup, in: Fensel, D.; Wahlster, H.; Lieberman, J. H. (editors):
Spinning the Semantic Web, MIT-Press, 2003, pp. 223-251.

[Welty et al. 1999]
Welty, C.; Lehmann, F.; Gruninger G.; Uschold M.: Ontology: Expert Systems
All Over Again?, Opening panel at the American Association for Artificial
Intelligence National Conference 1999 (AAAI-99), Powerpoint-presentation,
Austin, Texas, 1999.
Available at (accessed: 12/12/2004):
http://www.cs.vassar.edu/faculty/welty/presentations/aaa
i-99/

[Wenger 1998]
Wenger, E.: Communities of Practice, Cambridge University Press, New York,
USA, 1998.

[Züllighoven 2005]
Züllighoven, H.: Object-Oriented Construction Handbook: Developing
Application-Oriented Software with the Tools & Material Approach,
dpunkt.verlag / Morgan Kaufmann Publishers, Heidelberg, Germany, 2005.

[Zúñiga 2001]
Zúñiga, G. L.: Ontology: Its Transformation from Philosophy to Information
Systems, in: Smith, Barry; Welty, Christopher (editors): 2nd International
Conference on Formal Ontology in Information Systems: FOIS 2001,
Ogunquit, Maine, USA. October 17-19, 2001, ACM Press, New York, 2001,
pp. 187-197.

80

Appendix A – List of inverse slots

7 Appendix A – List of inverse slots
If two slots are defined as inverse slots (or one slot as an inverse of itself) and a value is
assigned to one of them, then Protégé will automatically add the correct value to the
other. E. g. the has direct sub-part and is direct sub-part of slots of
Structure are defined as inverse slots. Adding an instance A to the has direct
sub-part slot of B will automatically add B to A's is direct sub-part of
slot as well.
Note that this will only work, if the inverse slots are defined before assigning the
values. Changing existing slots with already assigned values to inverse slots will not
have this effect.

Represented relation or
property

Inverse slot(s)

a method or tool is used to
create certain results

• results in (Result)
• method/tool used (Method and Tools)

a process yields a result • yields result (Result)
• is result of (Process)

a results describes a structure • details structural component
(Structure)

• inverse of details structural
component (Result)

a results may impact
engineering criteria

• has impact on engineering criteria
(Engineering Criteria)

• is influenced by (Result)
direct part-of relation • has direct sub-parts (Structure)

• is direct sub-part of (Structure)
direct subprocess hierarchy • had direct sub-process (Process)

• is direct super-process (Process)
directly related to • directly related to (Knowledge

Area)
has experience • has experience (Experience)

• organizational entity having this
experience (Organizational Entity)

has precondition • has precondition (Experience)
• experience is necessary for

knowledge area (Knowledge Area)
hierarchy of physics
knowledge areas

• physics sub knowledge area
(Physics)

• physics super knowledge area
(Physics)

81

Appendix A – List of inverse slots

Represented relation or
property

Inverse slot(s)

influence of KM function on
KM criteria (1)

• km function slot (KM Function)
• influence relation on function side

(Function Influence on Criteria)
influence of KM function on
KM criteria (2)

• km criterion slot (KM Criteria)
• influence relation on criteria side

(Function Influence on Criteria)
is involved in • is involved in (Knowledge Area)
level of expertise • level of expertise (Experience

Level Characteristic)
• expertise value applies to these

preconditions (Experience)
method and tool hierarchy • more general method or tool (Method

and Tools)
• more specific method or tool

(Method and Tools)
method or tool can support a
process

• supporting methods & tools (Method
and Tools)

• used to support process (Process)
organizational units at
manufacturing site

• organizational units at this site
(Organizational Unit)

• located at site (Manufacturing
Site)

physics can be modeled using
a method or tool

• used for modeling (Physics)
• can be modeled with (Method and

Tools)
process hierarchy • has direct sub-process (Process)

• is direct sub-process (Process)
process sequence • directly follows (Process)

• directly precedes (Process)
responsible site • responsible site (Manufacturing

Site)
• has system leadership for

(Knowledge Area)
result hierarchy • has direct sub-result (Result)

• has direct super-result (Result)
time of experience • experience time (Time of

Experience)
• inverse of experience time

(Experience)

82

Erklärung*

Ich bestätige, dass ich die vorliegende Arbeit ausschließlich unter der Verwendung
angegebenen Quellen und Hilfsmittel angefertigt habe.

Hamburg, 4. April 2005

* This statement declares, that this thesis has been prepared by myself exclusively with the
literature and tools that are mentioned in the text.

